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SUMMARY

Lifespan is a remarkably diverse trait ranging from a
few days to several hundred years in nature, but the
mechanisms underlying the evolution of lifespan dif-
ferences remain elusive. Here we de novo assemble
a reference genome for the naturally short-lived Afri-
can turquoise killifish, providing a unique resource
for comparative and experimental genomics. The
identification of genes under positive selection in
this fish reveals potential candidates to explain its
compressed lifespan. Several aging genes are under
positive selection in this short-lived fish and long-
lived species, raising the intriguing possibility that
the same gene could underlie evolution of both com-
pressed and extended lifespans. Comparative geno-
mics and linkage analysis identify candidate genes
associated with lifespan differences between various
turquoise killifish strains. Remarkably, these genes
are clustered on the sex chromosome, suggesting
that short lifespan might have co-evolved with sex
determination. Our study provides insights into the
evolutionary forces that shape lifespan in nature.

INTRODUCTION

Nature offers an amazing diversity in the lifespan of species with

a 150,000-fold difference between the shortest-lived and

longest-lived species (Austad, 2010). Short-lived species have

long been recognized as essential for experimental studies,

and central pathways that regulate aging—notably the insulin-

FOXO and mTOR pathways—have been discovered in short-

lived models such as yeast, worms, and flies (Kaeberlein and

Kennedy, 2011; Kapahi et al., 2010; Kenyon, 2010). These path-
ways have turned out to modulate aging all the way to humans

(Flachsbart et al., 2009; Johnson et al., 2013). Many short-lived

species tend to occupy unique ecological niches where the

environment is harsh. Thus, these species can be used experi-

mentally for the identification of conserved genes important for

lifespan and can also provide insight into the evolutionary forces

that shape lifespan strategies in nature.

At the other end of the lifespan spectrum, exceptionally long-

lived species, such as the naked mole rat (�30 years), the

Brandt’s bat (�40 years), and the bowhead whale (�200 years)

have recently been used in comparative genomic studies to

identify genes and residues that are uniquely changed or under

positive selection in these organisms (Keane et al., 2015; Kim

et al., 2011; Seim et al., 2013). Interestingly, several genes

involved in aging and metabolic pathways are uniquely changed

in the Brandt’s bat (e.g., insulin-like growth factor 1 receptor

[IGF1R] and growth hormone receptor) (Seim et al., 2013) and

in the naked mole rat (e.g., the uncoupling protein UCP1) (Kim

et al., 2011). Despite these advances, much remains to be

learned about the genes that drive natural differences in lifespan

and their evolutionary selection in the wild.

Here, we examine the evolution and genetic architecture of

lifespan in a naturally short-lived vertebrate, the African tur-

quoise killifish (Nothobranchius furzeri), which has been pro-

posed as a vertebrate model for aging (Valdesalici and Celler-

ino, 2003). We report the de novo assembly and annotation

of a reference genome for the turquoise killifish. Evolutionary

genomics reveals genes that are positively selected in this

short-lived fish and may underlie unique traits in this species,

including its short life cycle. By performing a linkage analysis

between two strains with experimental lifespan differences,

we also identify candidate genes that are likely associated

with lifespan differences between strains. Our study provides

a resource for experimental and comparative genomics and

gives insights into the evolution of naturally short lifespans in

nature.
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Figure 1. The African Turquoise Killifish Is a Naturally Short-Lived Vertebrate with Multiple Strains

(A) Geographical distribution of turquoise killifish in the wild (orange dots). The climate of the area measured by the Koeppen-Geiger index (concentric contours).

(B) Examples of different morphological types in turquoise killifish males: yellow-tailed and red-tailed.

(C) Life cycle of the turquoise killifish. The turquoise killifish achieves sexual maturation and reproduces during the wet season. Diapausing embryos can survive

through the dry season, when the ponds are desiccated. Diapause can be skipped in the laboratory, resulting in a short generation time.

(D) Nothobranchius species are among the shortest-lived vertebrates. Lifespan data for turquoise killifish strains are from our experimental data (age of the 10th

percentile survivors) and are depicted by triangles. Lifespan of the strains can vary depending on housing conditions. Maximum lifespan data for the other

organisms are from the AnAge database.
RESULTS

The African Turquoise Killifish: a Vertebrate with a
Naturally Compressed Lifespan
The African turquoise killifish provides a unique system to test

the evolution and genetics of longevity (Cellerino et al., 2015).

This fish species comprises distinct populations that populate

ephemeral ponds in arid regions of Zimbabwe and Mozambique

(Figures 1A and 1B). The ponds are only present for 4–6 months

during the wet season, and the turquoise killifish has evolved a
1540 Cell 163, 1539–1554, December 3, 2015 ª2015 Elsevier Inc.
state of embryonic diapause—‘‘suspended animation’’—to sur-

vive through the dry season (Figure 1C). In the laboratory,

diapause can be skipped, and this fish has a captive lifespan

of 4–6 months (Figure 1C). Thus far, the turquoise killifish is the

shortest-lived vertebrate that can be bred in captivity (Figure 1D).

Interestingly, strains derived from the various populations of

turquoise killifish from different regions of Zimbabwe and

Mozambique can exhibit different experimental lifespans under

similar conditions (Terzibasi et al., 2008) (Figure 1D). The extreme

diversity in lifespan between the turquoise killifish (4–6 months)



and other species, as well as the presence of strains with

different captive lifespans, offers an unprecedented paradigm

to explore the evolution of lifespan.

De Novo Assembly and Annotation of the Turquoise
Killifish Genome
To gain insight into the evolution and genetic architecture of

lifespan in the turquoise killifish, we de novo sequenced and

assembled its genome. The GRZ strain, which originates from

Zimbabwe, was selected to build the reference genome because

it is inbred and has a low percentage of heterozygosity (Kirschner

et al., 2012; Valenzano et al., 2009). By sequencing 10 paired-

end or mate-pair Illumina libraries with a range of insert sizes,

we obtained a 1.02 Gb genome assembly with a contig N50 of

9.3 kb and a scaffold N50 of 118 kb (Figure 2A). Using paired-

end RNA-seq libraries and our high-density linkage map (see

Figure 6C), we improved the contiguity of the genome resulting

in a scaffold N50 of 247 kb (Figure 2A). The computational

genome size estimate ranges from 1.3 Gb to 2.2 Gb (Figure 2A).

The assembly statistics for our turquoise killifish genome are in

the range of Illumina-based genome assemblies, although the

assembly is still fragmented likely due to the high number of re-

peats (over 45% (Reichwald et al., 2009)) (Figure S1A). We next

assessed the completeness and quality of the turquoise killifish

genome assembly. Computational assessment indicates that

the assembly contains 96.8% of core eukaryotic genes (Fig-

ure 2A). Importantly, assembled transcripts, paired-end RNA-

seq reads, and contigs obtained by Sanger shotgun sequencing

(Reichwald et al., 2009) properly mapped to the genome (Figures

2A, S1B, S1C and S1D). Thus, the reference turquoise killifish

genome, while fragmented, contains most genes and is well

assembled.

We next annotated the reference turquoise killifish genome.

Using de novo gene prediction and sequence homology to 19

animal species, we identified 28,494 protein-coding gene

models (Figure 2B and S1G). There was maximal enrichment

of RNA-seq reads over protein-coding gene bodies (Figure S1E)

and maximal enrichment of trimethylated lysine 4 on histone H3

(H3K4me3), a chromatin mark associated with promoters, at

predicted transcription start sites (Figure S1F). The majority of

the predicted protein-coding genes in the turquoise killifish

have an ortholog in other vertebrate genomes (Table S2A). There

was a good paralog correspondence and large blocks of syn-

tenic genes between turquoise killifish and medaka, a fish with

a high-quality Sanger-sequenced genome (Figures S2A–S2D).

Together, these results indicate that protein-coding genes,

including paralogs, are well annotated in the turquoise killifish

assembly, although some split genes may be misannotated as

paralogs.

We also identified 5,859 high-confidence long non-coding

(lnc) RNA genes and predicted other classes of non-coding

RNA genes, including miRNAs (Figures 2B, S2E and S2F,

and Table S1A). Finally, we identified several families of trans-

posable elements (Figure 2C and Table S1C), at least some

of which were actively transcribed (Tables S1D and S1E). To

facilitate the use of the genome by the community, we have

deployed a fully functional genome browser website (http://

africanturquoisekillifishbrowser.org) (Figure 2D).
Evolutionary Analysis of the African Turquoise Killifish
Genome
To gain insight into unique features of the African turquoise killi-

fish, we analyzed its genome from an evolutionary perspective.

The reconstituted phylogeny based on high-confidence one-

to-one orthologs in 20 species (Tables S2B and S2C, Figure 3A)

is consistent with fossil records and previous estimates (Reich-

wald et al., 2009), confirming the quality of the turquoise killifish

genome assembly and annotation. To understand the evolution

of features unique to this short-lived fish, we identified sites un-

der positive selection in protein-coding genes in the turquoise

killifish compared to seven longer-lived fish species (Figure 3A).

We used a maximum likelihood approach to determine positive

selection at the codon level (Yang, 2007) (Figures 3B and S3A).

After multiple hypothesis correction, we identified 497 genes

with at least one site under positive selection in the turquoise kil-

lifish genome (Table S3A). Of these, 249 genes had one or more

sites with very high probability of being under positive selection,

and represent the highest-confidence list of genes under posi-

tive selection (Table S3B). In the remainder of the manuscript,

we used this highest-confidence list, unless otherwise indicated.

A gene ontology enrichment analysis revealed that the genes

under positive selection in the turquoise killifish are enriched

for components of signal transduction pathways, metabolism,

development, proteostasis, and immunity (Figure 3C and Table

S3C). Interestingly, several of these processes are relevant to

the modulation of aging (Kennedy et al., 2014; López-Otı́n

et al., 2013), although these categories are broad and could

underlie other biological processes. Positively selected genes

include the helicase RTEL1, which is involved in telomere elon-

gation and has been associated with dyskeratosis congenita,

a human syndrome with premature aging characteristics (Ballew

et al., 2013). Another intriguing positively selected gene is

PSMD11, which is involved in proteostasis and whose ortholog

is important for lifespan in C. elegans (Vilchez et al., 2012). Using

in silico prediction tools originally designed for human disease

variants, we found that 340 of the 2,009 positively selected res-

idues (corresponding to 121 proteins) had predicted functional

effects on the protein by two independent methods (Figures

3D and S3B, and Table S3D). The genes under positive selection

in the turquoise killifish tend to display gene expression changes

throughout life (p = 0.045 in Fisher’s exact test at FDR 5%;

Figures S3D and S3E and Table S3E). Thus, a subset of the

positively selected genes in the turquoise killifish could be impor-

tant for the evolution of a naturally short life trajectory. However,

these genes could also underlie the evolution of other traits in this

fish (e.g., diapause, resistance to high temperature, morphology,

or sensitivity to microbial communities or pathogens).

Aging and Longevity Genes Are under Positive Selection
in the Turquoise Killifish
To focus on genes with potential roles in the turquoise killifish

compressed lifespan trajectory, we intersected the set of 497

genes under positive selection in the turquoise killifish with

known aging-related genes from GenAge (mouse and human

combined) and LongevityMap (Table S4A) (Budovsky et al.,

2013; de Magalhães et al., 2009). While the overlap was

not statistically significant, 22 previously known aging-related
Cell 163, 1539–1554, December 3, 2015 ª2015 Elsevier Inc. 1541
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genes were under positive selection in the turquoise killifish

(Tables S4B and S4C). These genes include the insulin recep-

tor A (INSRA, Figure 4A) and IGF1 receptor (IGF1R(1of2), also

known as IGF1RA, Figure 4B). Reduced function in the insu-

lin/IGF1 receptors extends lifespan from worms to mice (Blüher

et al., 2003; Holzenberger et al., 2003; Kenyon et al., 1993),

and variants in IGF1 receptor are associated with exceptional

longevity in humans (Suh et al., 2008) (Figure 4C). Aging genes

under positive selection also include LMNA3 (LMNA(3of3),

Figure 4E), which encodes a nuclear Lamin-A/C. Mutations in

human LMNA can give rise to Hutchinson-Gilford Progeria

syndrome (Eriksson et al., 2003), although other variants are

associated with exceptional longevity in humans (Conneely

et al., 2012) (Figure 4C). Finally, another gene under positive

selection is the DNA repair gene XRCC5 (also known as

KU80, Figure S4A). XRCC5 deficiency in mice leads to prema-

ture aging (Vogel et al., 1999), though specific variants are also

associated with human longevity (Figure 4C) (Soerensen et al.,

2012).

We next mapped the variants under positive selection on the

protein structures or domains of several aging-related proteins,

highlighting variants with predicted functional effects (Tables

S4E–S4G). The majority of residues with functional effect under

positive selection in the insulin/IGF1 receptors (INSRA and

IGF1R1A) are located in the extracellular domains implicated

in ligand binding (Figures 4A, 4B, and 4D). In LMNA3, the func-

tional residues under positive selection are located in the fila-

mentous domain involved in the interaction with chromatin

(Figure 4E). Finally, in XRCC5, they are located in the DNA bind-

ing domain (Figure S4A). Thus, positively selected residues with

predicted functional effects are located in important domains in

aging-related proteins (see also Figures S4B–S4D) and might

have consequences on the role of these proteins in lifespan

regulation.

The ability to undergo diapause—a developmental stage

associated to drought-resistance—is likely under intense selec-

tive pressure given the transient nature of the ponds in which

these fish live. We asked if the 497 genes under positive selec-

tion in the turquoise killifish overlapped with genes involved in

diapause in other species, such as the insulin/IGF1-FOXO and

the TGFb pathways (Gottlieb and Ruvkun, 1994; Patterson

et al., 1997). Only the genes in the insulin/IGF1-FOXO pathway

(INSRA, IGF1RA, FOXO1B(2of2)), which are also involved in life-

span, were positively selected in the turquoise killifish (Fig-

ure S4E and Table S4D). Thus, positively selected genes in the

insulin/IGF1 pathway might play a role both in diapause and

compressed life cycle in the turquoise killifish, perhaps depend-

ing on external conditions.
Figure 2. De Novo Sequencing and Assembly of the Reference Genom

(A) Assembly statistics for draft genome (NotFur1) for the reference turquoise ki

unplaced. CEGs: core eukaryotic genes. See also Figures 6C, S1B, S1C.

(B) Number of annotated coding and non-coding genes in the reference turquoi

mologs in at least 10 species. lncRNA: long non-coding RNA; ncRNA: non-codin

S1B.

(C) Repetitive element composition in the reference turquoise killifish genome. LIN

LTR: long terminal repeat. Type I transposons are RNA-mediated. Type II transp

(D) Example of a genomic region containing insulin-like growth factor 1 receptor
Comparison of Aging Genes in the Turquoise Killifish
andOther Species or Groupswith Exceptional Longevity
Intriguingly, the genes under positive selection in the short-lived

turquoise killifish are also under positive selection or uniquely

changed in species with exceptional longevity (naked mole

rat, Brandt’s bat and bowhead whale). Indeed, IGF1R(1of2)

was found to be uniquely changed in the long-lived Brandt’s

bat (Seim et al., 2013) (Figures 4C and 4D) and under positive

selection in the short-lived marmoset (The Marmoset Genome

Sequencing and Analysis Consortium, 2014). More generally,

11 other genes are under positive selection or uniquely

changed in both turquoise killifish and ‘‘extreme longevity’’ spe-

cies or groups of individuals (Figure 4C). These genes include a

carboxyl ester lipase CEL(7of7), which is involved in cholesterol

metabolism and diabetes in humans (Raeder et al., 2006),

and the complement system component C3(3of3), which is

implicated in age-related degenerative pathologies and Alz-

heimer’s disease (Proitsi et al., 2012). These observations raise

the intriguing possibility that the same genes can be under pos-

itive selection in both extremely short-lived and long-lived

species.

Are the residues in proteins that are positively selected in

short-lived and long-lived species similar or different? We

mapped residues from the short-lived turquoise killifish,

long-lived Brandt’s bat, and humans onto the well-studied

IGF1 receptor (Figure 4D) and LMNA (Figure 4E). Many of

the residues under positive selection in the turquoise killifish

and the Brandt’s bat are in proximity on the IGF1 receptor

sequence, but differ (Figure 4D). Furthermore, the residues

under positive selection in the turquoise killifish and those

associated with longevity in human are both located in the

predicted IGF1R ligand-binding domains but are different (Fig-

ure 4D). These residues also differ from C. elegans longevity

mutations in the insulin/IGF1 receptor (DAF-2, Figure S4E).

Similarly, the LMNA3 residues under positive selection in the

turquoise killifish also differ from variants in human centenar-

ians or Hutchinson Gilford Progeria syndrome (Figure 4E).

More generally, for the same protein, the residues under se-

lection in the turquoise killifish differ from those uniquely

changed in the long-lived bowhead whale (Table S4G, and

mapping for CEL(7of7) in Figure S4F). Thus, proteins that

act as central nodes could have been selected to underlie

both compressed and extended life trajectories, depending

on the residues. Alternatively, the same proteins could have

been selected because both the turquoise killifish and long-

lived species exhibit resistance to stress—during diapause

for the turquoise killifish and throughout life for long-lived

species.
e of the African Turquoise Killifish

llifish strain (GRZ). Scaffolds that are not captured by the linkage map remain

se killifish genome. High-confidence protein coding genes are genes with ho-

g RNA; miRNA: microRNA. See also Figures S2E and S2F and Tables S1A and

E: long interspersed nuclear element; SINE: short interspersed nuclear element;

osons are DNA-mediated. See also Tables S1C–S1E.

(IGF1RA).
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(A) Phylogenetic tree of 20 animal species, including the turquoise killifish, based on 619 one-to-one orthologs (Table S2C). Number on nodes: level of confidence

(% bootstrap support). Scale bar: evolutionary distance (substitution per site). Maximum lifespan data are from our experimental data (turquoise killifish) or from

the AnAge database (other fish species), and represented as a heat map.

(B) Proportion and analysis of the genes under positive selection in the turquoise killifish compared to 7 other fish species after multiple hypothesis correction

(FDR < 5%). See also Figure S3A.

(C) Selected GO term enrichment for the genes under positive selection in the turquoise killifish. The number of genes associated with each category is indicated

in brackets after the term description, and enrichment values are indicated in colored scale. See also Table S3C.

(D) Predicted functional effect on the protein of residues under positive selection in the turquoise killifish have based on SIFT (top row) and PROVEAN (bottom

row). Residues are ordered from left to right based on the rank-product of the SIFT and PROVEAN scores. Only sites scored by both methods are displayed. See

also Figure S3B and Tables S3D, and S4G.
Sequencing Individuals from Additional Turquoise
Killifish Strains Reveals Variants in Aging-Related
Genes
Within the turquoise killifish species, there exist several strains

with reported differences in lifespan in specific laboratory envi-

ronments (Kirschner et al., 2012; Terzibasi et al., 2008) (Fig-

ures 5A, S5A, and 6B), and these differences could be leveraged
1544 Cell 163, 1539–1554, December 3, 2015 ª2015 Elsevier Inc.
to understand the genetic architecture of lifespan. To assess

the genetic differences among turquoise killifish strains, we

sequenced at lower coverage individuals from two additional

strains that were captured in Mozambique in 2004 and 2007

(MZM-0403 and MZM-0703, respectively) and from a control

GRZ individual (Figure 5A). This analysis uncovered over three

million single nucleotide polymorphisms (SNPs) between
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(legend continued on next page)
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MZM-0403 or MZM-0703 and the reference GRZ genome (Fig-

ures 5A, 5B, and S5B). As expected, there were fewer SNPs

between theGRZ individual and the referenceGRZ genome (Fig-

ures 5A and S5B).

To identify potential genetic differences associated with

phenotypic diversity (e.g., lifespan, color, etc.) among strains,

we focused on SNPs that are shared between the longer-lived

red-tailed MZM strains, but not by the shorter-lived yellow-tailed

GRZ reference strain (Figure 5C). We identified 22,389 non-syn-

onymous SNPs in 10,638 genes, and 139 of these genes over-

lapped with known aging-related genes that encompassed all

9 ‘‘hallmarks of aging’’ (López-Otı́n et al., 2013) (Figure 5D and

Table S5A). A number of these SNPs are predicted to have

functional impact on the protein (Figure 5D and Table S5B).

Genes with functional variants between turquoise killifish strains

include insulin/IGF signaling pathway genes (GHR(1of4) and

FOXO4 transcription factor) and inter-cellular communication

genes, such as progranulin (GRN, also known as PGRN) (Fig-

ure 5D). While this analysis does not identify the specific variants

that explain lifespan differences between strains, it provides a

resource for the study of genetic variation in this species.

Identification of a Genomic Region Significantly
Associated with Differences in Lifespan between
Turquoise Killifish Strains
To identify genomic regions that are important for lifespan dif-

ferences between turquoise killifish strains, we performed a ge-

netic linkage analysis in a cross between the shorter-lived and

longer-lived strains (Figure 6A). We used the shorter-lived refer-

ence strain captured in Zimbabwe in 1968 (GRZ) and longer-

lived strains derived from expeditions in Mozambique in 2007

and 2006 (MZM-0703 and Soveia) (Figure S5A). These strains

exhibit differences in lifespan in the laboratory conditions used

in this study (Figure 6B and Table S6A), although the number

of animals was low for the Soveia strain and differences between

strains could have been accentuated by the laboratory condi-

tions used. We crossed a female from the GRZ strain to a male

from the MZM-0703 strain (‘‘cross GxM,’’ Figure 6A), as well as

a female from the Soveia strain with a male from the GRZ strain

(‘‘cross SxG,’’ Table S6A). F1 fish were interbred and the lifespan

of as many F2 fish as possible (430 for cross GxM, and 130 for

cross SxG) was scored. F1 and F2 fish live longer than the

short-lived GRZ parental strain in both crosses (Figure 6B, and

Table S6A), suggesting that the long lifespan trait is dominant

over the short lifespan trait. Similar lifespan results were ob-

tained with cross GxM (in which the female is from the shorter-
(C) Aging and longevity candidates under positive selection in the short-lived turqu

aging-related genes from the GenAge database (human and mouse combined, T

LongevityMap database (Table S4A). Right: other genes that are also under po

phenotypes (naked mole rat, Brandt’s bat, bowhead whale).

(D) Location and variants of residues under positive selection in the turquoise killi

human centenarians. Top: turquoise killifish variants, with the changed amino a

variants associated with centenarians in humans or residues with unique amin

sequence. The variants correspond to the amino acids on the right.

(E) Location and variants of residues under positive selection in the turquoise k

centenarians. Top left: turquoise killifish variants, with the changed amino acid on

onto the turquoise killifish sequence. Bottom: Variants in Hutchinson-Gilford Proge

the amino acids on the right. For the turquoise killifish, color represents the stren
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lived strain) and cross SxG (in which the male is from the

shorter-lived strains), suggesting that there is no major maternal

contribution to lifespan. Surprisingly, while males and females

had a similar lifespan in the parental strains, males were signifi-

cantly longer-lived than females in the F1 and F2 generation of

cross GxM (Figures S6A–S6D), implying a possible interplay be-

tween lifespan and sex.

To identify the genomic regions significantly associated with

lifespan differences, we conducted a genome-wide linkage anal-

ysis using cross GxM because of the higher number of F2

individuals in this cross. Using restriction-site associated DNA

sequencing (RAD-seq) to genotype P0 grandparents (2), F1

fish (16), and a large subset of F2 fish (207), we identified 8,399

high-confidence genomicmarkers that displayed SNPs between

the grandparents. These markers allowed us to build a high-res-

olution linkage map with 19 linkage groups (LGs), providing an

anchor to our reference genome (Figure 6C). Importantly, the

number of LGs is the same as the haploid number of chromo-

somes in this species (19) (Reichwald et al., 2009).

We then mapped individual lifespan as a phenotype using a

method based on Random Forest. The most significant genetic

region associated with lifespan is on linkage group 3 (LG-3) (Fig-

ure 6C). This region was found to be associated with lifespan

differencesby two independent statisticalmethods,RandomFor-

est and log-rank test, and it reached genome-wide significance in

theRandomForestQTLanalysis (FDR<5%). Importantly, the life-

span QTL on LG-3 was ‘‘non-transgressive,’’ i.e., the individuals

with the longer-lived grandparents genotype at this locus (Fig-

ure 6D, red) were the longest-lived. The fact that individuals with

a heterozygous genotype at this locus do not live longer than in-

dividuals with either grandparent genotype (Figure 6D) argues

against hybrid vigor, consistentwith the absenceof global enrich-

ment in heterozygous fish in longest-lived F2 individuals (Fig-

ure S6E). Individuals with one or both alleles from the longer-lived

grandparent at the QTL peak marker exhibited a �30% increase

in lifespan (p = 1.63 10�3 and p = 1.83 10�3, respectively, in log-

rank tests) compared to individuals with both alleles from the

shorter-livedgrandparent (Figures 6EandS6F). Thus, this genetic

region on LG-3 has a significant contribution to the lifespan differ-

ence in the F2 generation of this cross.

The Genomic Region Associated with Lifespan
Differences between TurquoiseKillifish Strains Is on the
Sex Chromosome
Interestingly, the genetic region associated with differences

in lifespan among turquoise killifish strains is close to the
oise killifish and their variation in long-lived animal species and in humans. Left:

able S4A). Middle: genes identified in association studies in humans from the

sitive selection or uniquely changed in other species with extreme longevity

fish for IGF1R(1of2), and their location and variants in long-lived species and in

cid on the right. Color represents the strength of functional impact. Bottom:

o acid changes in long-lived Brandt’s bat mapped on the turquoise killifish

illifish for LMNA(3of3), and their location and variants in progeria and human

the right. Top right: variants associated with centenarians in humans mapped

ria Syndromemapped onto the turquoise killifish sequence. These variants are

gth of functional impact.
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sex-determination region (Figure 7A). A previous study identified

a lifespan QTL in the linkage group linked to sex but at the time

this QTL could not be resolved from the sex-determination re-

gion (Kirschner et al., 2012). Using our high-density linkage

map, we found that the lifespan QTL and the sex-determining

region are on the same linkage group, but 36–38 cM apart (Fig-

ure 7B, top), although distance estimates in a sex-linked region

cannot be fully accurate due to suppressed recombination near

the sex-determining region. Individuals with both alleles from

the long-lived grandparent at the lifespan QTL peak marker ex-

hibited significant increase in lifespan (Figure 7B, bottom). The

lifespan QTL also remained significant even after regressing

for sex (Figures 6D and 7C). Importantly, the marker with the

highest significance for lifespan was associated with longevity

in both males and females (Figure S6F), ruling out the possibil-

ity that significance is due to a potential bias coming from

the males. Together, these results strongly support that the

lifespan QTL and the sex-determining region are linked, but

distinct.

Genes in the Region Associated with Lifespan
Differences
We next used the turquoise killifish genome to identify the

specific genes in the region associated with lifespan differences

between strains. The lifespan QTL region captures genomic

scaffolds encompassing 31 protein-coding genes, 6 long non-

coding RNA genes, and 2 small nucleolar RNA genes (snoRNA)

(Figure 7C and Tables S7A–S7E). Among the 31 protein-coding

genes, 7 had already been linked to the regulation of aging or life-

span in humans or model organisms (Figure 7C and Table S7A).

These include the gene encoding progranulin (GRN), which has

been implicated in neurodegenerative diseases (Wang et al.,

2010) and lifespan regulation in mice (Ahmed et al., 2010)

(Figure 7C). Another interesting candidate is NUDT1, which is

involved in the hydrolysis of 8-oxo-dGTP, a deleterious nucleo-

side that increases with aging in mitochondrial DNA (Souza-

Pinto et al., 1999) (Figure 7C). NUDT1 overexpression extends

lifespan in mice (De Luca et al., 2013). Yet another intriguing

candidate is GSTT1A, which encodes a gluthathione S-trans-

ferase, a class of redox homeostasis enzymes that regulate life-

span in worms and mice (Ayyadevara et al., 2007; Pesch et al.,

2004) (Figure 7C). Finally, this region comprises genes encoding

two transcription factors (STAT3, STAT5.1(2of6)) that have been

implicated in regulating ‘‘inflammaging’’ (De-Fraja et al., 2000)

(Figure 7C).

Of the 31 genes underlying the lifespan QTL, 15 harbored

non-synonymous coding differences between the P0 individ-
Figure 5. Genetic Variation in Individuals from Different Strains of the

(A) Resequencing of individuals from different turquoise killifish strains (GRZ, M

environments. SNPs: Single Nucleotide Polymorphisms.

(B) Circos plot of the 100 longest scaffolds showing SNP density in resequenced in

versus the reference GRZ assembly.

(C) Unique and shared SNPs between resequenced individuals from reported sho

reference GRZ assembly. Values in the Venn diagram should be multiplied by 10

(D) Non-synonymous SNPs specific to individuals from the longer-lived strains

Aging-related genes were obtained from the GenAge database (human and mou

variant with predicted functional effect by both SIFT and PROVEAN (bolded gen
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uals (Figures 7C and S7A, and Table S7A). For 6 of these

15 genes (ATXN7L1, GRN, HIPK2(11of26), IFI35, TTYH3A and

ZNF800A), the coding differences occur in otherwise well-

conserved residues, are also observed in the resequenced

MZM-0403 individual, and the variant in the longer-lived P0 cor-

responds to the consensus from other species (Figures S7B–

S7D; Table S7A). The presence of several of these variants in

cross GxM P0 founders was confirmed by Sanger sequencing

(Table S7E). Interestingly, one of the variants in the turquoise kil-

lifish GRN (W449 in the shorter-lived strain and C449 in the

longer-lived strain) is within amotif that plays a key role in protein

folding and that is mutated in frontotemporal dementia (FTD)

(Wang et al., 2010) (Figure 7D). Consistently, this turquoise killi-

fish variant is predicted to have functional consequences (Fig-

ure 7D and Tables S7G and S7H). This variant is also found in

wild fish captured during our expedition to Mozambique and

Zimbabwe in 2010 (Figure S7E and Table S7F), indicating that

it is not a spurious mutation that arose in the laboratory or from

the bottleneck of a rare allele. Thus, coding variations in GRN

or other candidates may underlie differences in lifespan between

strains of this species, although we cannot exclude that non-

coding variants are responsible for these phenotypic difference

(Figure S7A).

We wondered if the number of aging genes within the lifespan

QTL was higher than expected by chance. Statistical analysis

showed that the lifespan QTL region is significantly enriched

for known aging-related genes (GenAge, mouse and human

combined, Table S4A) compared to the rest of LG-3 (p =

6.4 3 10�4, Fisher’s exact test) or to all linkage groups (p =

2.1 3 10�4, Fisher’s exact test) (Figure 7E). This significant

enrichment for known aging and longevity genes in the region

underlying the lifespan QTL suggests that a haplotype block

containing a cluster of genes, rather than a single gene, might

be involved in the observed lifespan difference. Sex-deter-

mining regions are usually regions of suppressed recombina-

tion, and indeed the recombination frequencies are the lowest

in the region associated with sex determination (Figures S7F

and S7G). Intriguingly, the recombination frequencies are lower

than expected throughout the entire LG-3, including the life-

span QTL region (Figures 7E, S7F, and S7G), compared to

the rest of the genome. This haplotype block might have

formed because of the suppressed recombination in this re-

gion, due to its proximity with the sex-determining region

(Figure 7E). While this may be fortuitous, the presence of the

lifespan-determining region on the sex chromosome might

have evolved to couple strategies of fast reproduction with

genes involved in overall fitness.
Turquoise Killifish

ZM-0703, MZM-0403) with different reported lifespans in specific laboratory

dividuals from different turquoise killifish strains (GRZ,MZM-0703,MZM-0403)

rter-lived (GRZ) or longer-lived strains (MZM-0703 and MZM-0403) versus the

00 and are rounded for concision.

(MZM-0403 and MZM-0703) in genes encompassing the hallmarks of aging.

se combined, Table S4A). All presented aging-related genes had at least one

es) or by SIFT or PROVEAN (non bolded genes) (see also Table S5B).
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DISCUSSION

The Genome of One of the Shortest-Lived Vertebrate
Species: A Resource for Comparative, Experimental,
and Evolutionary Genomics
The African turquoise killifish reference genome and transcrip-

tome, high-density genetic linkage map, and a comprehensive

genome browser represent great resources for the explora-

tion of the genetic principles and the evolution underlying

several unique traits in this species, such as a compressed

life cycle and embryonic diapause. These resources, com-

bined with the rapid experimental capacity of this fish, provide

an unprecedented setting for evolution and genetic studies in

vertebrates.

Evolution of the Lifespan Differences between Species
The forces that shape differences in lifespan in nature are

still largely unknown. Extrinsic mortality imposes a strong

constraint for rapid reproduction, which may ultimately result

in the evolution of shorter adult lifespan (Chen and Maklakov,

2012). The complete desiccation of the turquoise killifish ponds

during the dry season represents a potent extrinsic mortality

constraint that may have resulted in the evolution of acceler-

ated sexual maturation. Short lifespan might have evolved as

the pleiotropic byproduct of rapid sexual maturation or could

have resulted from relaxed negative selection on several genes.

The abundance of transposable elements in the turquoise killi-

fish genome might have played a role in the evolution of its

compressed lifespan.

Intriguingly, genes implicated in insulin/IGF signaling and

genome maintenance are under positive selection or uniquely

changed in exceptionally long-lived mammals such as the naked

mole rat (Kim et al., 2011), Brandt’s bat (Seim et al., 2013), and

bowhead whale (Keane et al., 2015). IGF1R has also been shown

to be under positive selection in the genome of a short-lived pri-

mate, the marmoset (The Marmoset Genome Sequencing and

Analysis Consortium, 2014), raising the exciting possibility that

the same gene may be modified to evolve compressed or

extended life trajectories under different environmental con-

straints. IGF1R, which controls organismal growth, sexual matu-

rity, fertility, and fitness, may be particularly ‘‘tunable’’ for the

evolution of different life strategies.
Figure 6. Genetic Architecture of Lifespan Using a Cross between Sho

(A) Scheme of crossGxM. A female from the shorter-lived GRZ strain was crossed

F1 individuals were mated to generate F2 progeny.

(B) Lifespan of the parental strains, F1, and F2 progeny of cross GxM in the ca

differential survival compared to GRZ individuals in log-rank tests are indicated.

(C) Circos plot representing the linkage map of cross GxM and association of ma

composed of 19 linkage groups (LG). The association of eachRAD-seqmarker wit

q-value (red dots). The 5% FDR significance threshold is denoted by a black lin

scaffold length is scaled to genetic distance (cM) and not physical distance (bp).

(D) The lifespan QTL is non-transgressive. Upper: Raw �log10 (Random Forest

�log10 of the Random Forest Analysis q-values for association of markers to lif

founding variable. Bottom: Survival stratified by genotype associated with eachma

grandparent (red) exhibit highest survival at the�35 cM position on LG-3, whereas

exhibit lowest survival. Light red rectangle: lifespan QTL region.

(E) Lifespan of fish with different genotypes at themarker that ismost significantly

survival compared to individuals with the GRZ/GRZ genotype in log-rank tests a
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Genetic Architecture of Lifespan between Turquoise
Killifish Strains
A region associated to lifespan differences between turquoise

killifish strains contains a cluster of known aging and longevity

genes. The gene encoding progranulin (GRN) is particularly inter-

esting as it influences lifespan in mice (Ahmed et al., 2010) and

contributes to age-related diseases in humans, in particular

frontotemporal dementia (Baker et al., 2006). It will be important

to determine the functional consequences of the turquoise killi-

fish GRN variants, for example in stress response (Judy et al.,

2013). Variants in non-coding genes or regulatory regions,

such as enhancers, may also mediate the observed lifespan dif-

ferences between fish strains. Finally, the differences in lifespan

between turquoise killifish strains may be accentuated in the

specific laboratory setting used in this study, and the genetic re-

gion identified may represent the interaction between genetic

determinants in this particular environment.

A Cluster of Aging and Longevity Genes Linked to the
Sex-Determining Region
The most important region associated to differences in lifespan

between turquoise killifish strains is on the sex chromosome,

consistent with a previous finding (Kirschner et al., 2012). Our

high-resolution genetic linkage map enabled us to show that

the lifespan QTL is linked to, but distinct from the sex-deter-

mining region, within a region of suppressed recombination.

The association between the sex-determining region and the life-

span QTL raises the intriguing possibility that these regions

might have co-evolved. Alternatively, conditions of partially sup-

pressed recombination might have allowed this trait to hitchhike

on the sex-determining region without any direct fitness benefit.

In conclusion, our analyses reveal a possible association be-

tween lifespan and sex determination in the turquoise killifish

and identify several potential candidates that may underlie life-

span differences across taxa. The African turquoise killifish

genomic and genetic resources should help further explore the

genetic basis of longevity and the evolutionary forces that shape

vertebrate life history traits in nature.

EXPERIMENTAL PROCEDURES

Additional details are provided in the Supplemental Experimental Procedures.
rter-Lived and Longer-Lived Strains of the Turquoise Killifish

with amale from the longer-livedMZM-0703 strain (P0) to generate F1 progeny.

ptive conditions used in this study (pooled males and females). p values for

See Table S6A for complete statistics.

rkers with lifespan by quantitative trait locus (QTL) analysis. The linkage map is

h differences in lifespan is represented as –log10 of the RandomForest Analysis

e. There is one marker above this threshold in LG-3 (lifespan QTL). Genomic

Analysis q-value) for association of markers to individual fish lifespan. Middle:

espan after sex regression to account for the possible effect of sex as a con-

rker on LG-3. Homozygoteswith alleles coming from the long-livedMZM-0703

homozygotes with alleles coming from the short-lived GRZ grandparent (blue)

associated to the lifespan QTL (RAD-seqmarker 46347). p values for differential

re indicated. See also Table S6B for complete statistics.
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Figure 7. The Lifespan QTL Is Linked to the Sex-Determining Region and Contains a Cluster of Aging Genes
(A) Circos plot representing the association of markers with sex by QTL analysis in cross GxM. The association of each RAD-seq marker with sex is represented

as �log10 of the Random Forest Analysis q-value (turquoise dots). The 5% FDR significance threshold is denoted by a black line. There is a cluster of markers

above this threshold in LG-3 (sex-determining region).

(legend continued on next page)
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Assembly of the Turquoise Killifish Genome and Identification of

Genetic Variants between Different Strains

Genomic DNA was isolated from African turquoise killifish individuals from the

inbred strain GRZ, and 10 libraries with varying insert sizes were constructed

for Illumina sequencing on HiSeq2000 instruments. Assembly was performed

usingSGA(SimpsonandDurbin, 2012) andSOAPdenovo (Luoetal., 2012), scaf-

folding usingSSPACEBasic (Boetzer et al., 2011) andGap-filling usingGapFiller

(Nadalin et al., 2012). The SGA and SOAP genome assemblies were reconciled

using GARM (Soto-Jimenez et al., 2014). Higher-order scaffolding was per-

formed using raw reads from Illumina paired-end RNA-seq libraries and the

linkage map from cross GxM (see below). To identify genetic variants among

different strains of the turquoise killifish, we resequenced the founders of cross

GxM(GRZ female andMZM-0703male) andamale individual fromanotherwild-

derived strain (MZM-0403). We used the GATK genotyping pipeline (McKenna

et al., 2010) to call variants between turquoise killifish strains. The turquoise

killifish genome browser is at http://africanturquoisekillifishbrowser.org.

De Novo Prediction and Annotation of Protein Coding Gene Models

The MAKER2 pipeline was used to generate putative protein coding gene pre-

dictions (Holt and Yandell, 2011) supported by two ab initio gene prediction

approaches. To annotate protein-coding genes from predictions, a homol-

ogy-based approach using 19 other genomes (Table S2B) was implemented,

leading to a final set of 28,494 turquoise killifish putative protein coding genes.

Identification of Turquoise Killifish Genes under Positive Selection

and Prediction of Their Functional Impact

The genes under positive selection were identified using a branch-site model

implemented in PAML (Yang, 2007). Single ortholog protein families were iden-

tified using the eight teleost fish genomes in our analysis. Proteins from each

family were aligned using PRANK (Löytynoja and Goldman, 2005) and the re-

sulting alignments were filtered in GUIDANCE (Penn et al., 2010). CODEML

was then used to predict the genes and individual sites under positive selec-

tion in the turquoise killifish lineage after stringent filtering andmultiple hypoth-

esis correction. Functional impact for the residues under positive selection or

the non-synonymous variants between killifish strains was assessed using two

prediction algorithms: PROVEAN (Choi et al., 2012) and SIFT (Kumar et al.,

2009).

Linkage Map and QTL Mapping

One female from the GRZ strain was crossed with one male from the MZM-

0703 strain (cross GxM), and one female from the Soveia strain was crossed

with a male from the GRZ strain (cross SxG). F1 fish were interbred in families

to generate F2 fish and lifespan was scored as the age at death for all individ-

uals (raised in cohorts of mixed sexes). RAD-seq libraries for 225 samples from

the cross GxM and for 86 from the SxG cross were prepared as described (Et-

ter et al., 2011). This resulted in 8,399 polymorphic markers for cross GxM.We

built a linkage map for cross GxM with R/qtl using RAD-seq markers that had
(B) The lifespan QTL is distinct from the sex-determining region. Top: Random For

log-rank survival analysis in the F2 generation of crossGxMbetween homozygote

at each marker. Light red rectangle: Lifespan QTL region.

(C) Identification of the genes underlying the lifespan QTL on LG-3. Left: Sex-regre

lifespan. Dashed lines delimit the lifespan QTL. Right: lifespan QTL region on LG3

blue colors. Markers are linked to the mid-points of the scaffolds. Genes in red ha

combined, Table S4A) or manually curated from the literature (asterisks, Table S7A

residues. See also Figures S7B–S7G.

(D) Location of residues with putative functional consequences and associated

represents the strength of functional impact. Top: NMR structure of human ortho

insert: alignment of the residue with strong functional effect W449 in the turquoise

region surrounding a mutation found in human frontotemporal dementia (FTD) pa

the residues mapped on the turquoise killifish protein sequence (gray).

(E) Cluster of known aging genes in the lifespan QTL region, in a region of suppres

genes (from GeneAge, human and mouse combined) in the lifespan QTL region (p

10�4 in Fisher’s exact test, compared to the rest of LG-3). Bottom: measure of su

progeny at each marker on LG-3. See also Figures S7H and S7I. Dash line indica

QTL region. Turquoise rectangle: sex-determining region.
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homozygous haplotypes in the grandparents. After stringent filtering of

markers and individuals, the final linkage map comprised 193 F2 individuals

and 5,757 RAD-seq markers. QTL detection was conducted using a Random

Forest-based method (Clément-Ziza et al., 2014), which uses genetic markers

as predictors to model the traits and where population structure is modeled as

covariates.

ACCESSION NUMBERS

The accession number for all new GRZ genome and transcriptome libraries

and RAD-seq libraries reported in this paper is SRA: SRP041421. The acces-

sion number for the H3K4me3ChIP-seq data in the brain reported in this paper

is SRA: SRP045718. The accession number for the draft genome reported in

this paper is GenBank: JNBZ00000000.
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seven figures, and seven tables and can be found with this article online at
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Supplemental Figures

Figure S1. Quality Controls for the De Novo Genome Assembly and Annotation of Protein-Coding Genes in the African Turquoise Killifish,
Related to Figure 2

(A) Sequencing coverage of some regions is considerably higher than expected (see Experimental Procedures), suggesting the presence of contigs assembled as

one copy but repeated many times in the genome. A conservative genome size estimate of 2 Gb was used for these calculations.

(legend continued on next page)
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(B) Mapping of previously published turquoise killifish transcript catalog (Petzold et al., 2013) or our de novo-assembled Oases transcriptome (this study) to the

turquoise killifish genome assembly. High-quality mapped transcripts: alignment by exonerate filtered by MAKER2. Partially mapped transcripts: alignment by

BLAT (transcripts not mapped by exonerate) (see Experimental Procedures).

(C) Mapping of turquoise killifish RNA-seq paired-end libraries to the turquoise killifish genome assembly. Alignment was performed with Tophat2. Note that the

majority of mapped reads are properly paired, indicative of a good genome assembly quality.

(D) Distribution histogram of previously published Sanger-sequenced shotgun contigs (Reichwald et al., 2009) mapping to our turquoise killifish genome as-

sembly. Alignments were performed using BLAT.

(E) Meta-gene analysis using RNA-seq data from four adult tissues. Annotated protein-coding genes were used. The RNA-seq signal is maximal over gene

bodies, consistent with correct gene prediction and annotation.

(F) Meta-promoter analysis using H3K4me3 ChIP-seq data from brain tissues. Annotated protein-coding genes were used. The H3K4me3 ChIP-seq signal is

maximal at the transcriptional start site (TSS), consistent with correct promoter prediction.

(G) Naming convention for putative protein-coding genes that do not have a clear name from orthology. Gene ID is obtained using the scaffold number, gene

position on the scaffold, number of best reciprocal blast hits between turquoise killifish and 19 other species, and number of BLASTp hits among all 20 species.
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Figure S2. Quality Controls for Correct Paralog Assembly and Non-coding RNA Predictions in the Genome of the Turquoise Killifish, Related

to Figure 2

(A and B) Correlation of paralog numbers within gene families in turquoise killifish versus medaka (A) and in platyfish versus medaka for comparison (B). Medaka

was chosen because it is the closest fish to turquoise killifish and platyfish with a Sanger-sequenced genome. The slope of the linear least square regression

model without an intercept term and its standard error are reported. Gene families with at least one gene from each species are displayed. The results shown are

for 7,593 gene families (A) and 8,303 families (B), using a similarity threshold of 70. Similar results were obtained when using other similarity thresholds (see

Experimental Procedures). Themain plot in (A) corresponds to the analysis after removing the largest gene family in the turquoise killifish (268members, including

multiple copies/isoforms of the ZNF235 gene) whereas the inset corresponds to the entire analysis.

(C and D) Oxford Grid plots showing synteny between turquoise killifish linkage groups and medaka chromosomes (C), and between platyfish and medaka

chromosomes for comparison (D). Note the presence of large blocks of syntenic genes, indicating a good quality of assembly, including for paralogs (see

Experimental Procedures).

(E) Naming convention for lncRNA genes. Gene ID is obtained using the scaffold number, gene position on the scaffold, and 0/1 encoding to reflect the tissues in

which RNA level evidence was found.

(F) ncRNA gene predictions in the turquoise killifish. Predictions from different tools for a single class of genes (e.g., tRNA genes) may be overlapping. *predictions

used to compute the numbers of ncRNA genes reported in Figure 2B.
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Figure S3. Evolutionary Analysis of the Turquoise Killifish Genome and Prediction of Functional Effects of Positively Selected Variants,

Related to Figure 3

(A) Flowchart of the analysis of genes under positive selection in the turquoise killifish genome. Only genes with 1-to-1 orthologs with other bony fish species were

included for alignment. The phylogenetic tree of the fish species used to analyze positive selection with PAML is indicated. Multiple hypothesis correction using

Benjamini-Hochberg was applied, leading to 497 genes with significant p value from Likelihood Ration Test (Table S3A). A subset of 249 genes had at least one

site with BEB probability > 0.95 (‘‘highest confidence list,’’ Table S3B).

(B) Fraction of residues under positive selection with functional effect using SIFT (left) or PROVEAN (middle) as well as overlap between both methods (right). See

also Table S3D.

(C) The vast majority of sites under positive selection in the GRZ reference genome do not overlap with inter-individual or inter-strain non-synonymous coding

variants. None of the sites under positive selection in turquoise killifish using the GRZ reference genome overlap with non-synonymous variants in another GRZ

individual (see also Figures 5 and S5B). Only 5 and 7 sites under positive selection in turquoise killifish using the GRZ reference genome overlap with non-

synonymous variants identified in individuals from MZM-0703 and MZM-0403, respectively (see also Figures 5 and S5B). The fact that most of the genes under

positive selection do not overlap with inter-individual or inter-strain variation is compatible with the identification of species-level selective constraints.

(D) Venn diagram for the overlap of genes under positive selection and genes showing a significant change in expression (FDR threshold of 5%) over the course of

aging in brain tissues in the MZM-0410 strain (Baumgart et al., 2014) (see Experimental Procedures). p value is from the significance of overlap for enrichment in

Fisher’s exact test.

(E) Heatmap of expression over lifespan for genes under positive selection that show significant change in expression over the course of aging in brains of in-

dividuals from the MZM-0410 strain. Displayed genes in the heatmap correspond to the 85 gene overlap from Figure S3D and are listed in Table S3E.
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Figure S4. Analysis of Aging-Related Genes under Positive Selection in the Turquoise Killifish, Related to Figure 4

(A and B) Location and functional effect of residues under positive selection in XRCC5 (A) and BAX (B) in the turquoise killifish. Red: changes with strong functional

impact (identified by SIFT, PROVEAN, and structural analysis). Orange: changes with moderate functional impact (identified by at least SIFT, PROVEAN, or

structural analysis). Yellow: changes with neutral functional impact. Top: crystal structure of human ortholog. Residues and their functional impacts are denoted

by colored dots. Grey shadow: region of the protein with available crystal structure. Bottom: schematic of the residues mapped on the turquoise killifish protein

sequence (gray). Residues and their functional impacts are denoted by colored bars. The conserved protein domains and functional sites predicted from the NCBI

conserved domain database (Marchler-Bauer et al., 2015) are indicated. The indicated start codon is based onmanually curated evidence. vWFA: VonWillebrand

factor type A.

(C and D) Location of residues under positive selection in MGAT5(1of3) (C) and IRS1(2of2) (D) in the turquoise killifish. Schematic of the residues mapped on the

turquoise killifish protein sequence (gray). Residues and their functional impacts are denoted by colored bars. The strength of the functional effect is color-coded

(legend continued on next page)
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in the sameway as in Figure 4A. The conserved protein domains and functional sites predicted from the NCBI conserved domain database (Marchler-Bauer et al.,

2015) are indicated. BLOC-1: biogenesis of lysosome-related organelles complex-1.

(E) Location and variants of residues under positive selection in the turquoise killifish for IGF1R(1of2), and the location and variants of residues linked to a longevity

or dauer diapause phenotype in C. elegans insulin/IGF1 receptor (DAF-2). Top: turquoise killifish variants, with the changed amino acid on the right. The strength

of the functional effect is color-coded in the same way as in Figure 4A. Bottom: mutations in DAF-2 that are associated with an ‘‘extended lifespan’’ phenotype in

C. elegans (fromWormBase). Amino-acid changes in DAF-2 are from (Patel et al., 2008) and are mapped to turquoise killifish IGF1R(1of2). These mutants are on

the right. Note that some of thesemutants can also lead to dauer diapause (Gems et al., 1998). Conserved protein domains and functional sites predicted from the

NCBI conserved domain database (Marchler-Bauer et al., 2015).

(F) Location and variants of residues under positive selection in the turquoise killifish for CEL(7of7), and their location and variants in the long-lived bowhead

whale. Top: turquoise killifish variants, with the changed amino acid on the right. Bottom: uniquely mutated residues in the bowhead whale (Keane et al., 2015)

mapped onto the turquoise killifish sequence. For the turquoise killifish, the strength of the functional effect is color-coded in the same manner as in Figure S4A

(note that the structural analysis could not be performed for that protein).
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Figure S5. Geographic Location of Different Strains of Turquoise Killifish and Genetic Variation in Individuals from Different Strains, Related

to Figures 5 and 6

(A) Geographic origin of turquoise killifish strains used for resequencing and genetic variation (Figure 5) and QTL mapping (Figure 6). Blue: shorter-lived strain in

specific captive conditions. Red: longer-lived strains in specific captive conditions.

(B) Barplot with predicted functional effect of detected SNPs in resequenced individuals from the GRZ, MZM-0703, andMZM-0403 strains. As expected, most of

the variation is in regulatory regions or in introns, with only a minority leading to non-synonymous coding changes (in red).
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Figure S6. Genetic Architecture of Lifespan Using Crosses between Shorter-Lived and Longer-Lived Strains of the African Turquoise

Killifish, Related to Figure 6

(A–D) Lifespan stratified by sex for GRZ parental strain (A), parental MZM-0703 strain (B), cross GxMF1 (C), and cross GxMF2 progeny (D). p values for differential

survival between males and females in log-rank tests are indicated.

(E) Scatterplot of lifespan versus marker heterozygosity in cross GxM F2 progeny. Note that there is no global correlation between heterozygosity and lifespan,

compatible with the absence of widespread hybrid vigor effect (where heterozygosity would be correlated to extended longevity).

(F) Lifespan stratified by sex and genotype in cross GxM F2 at the marker that is most significantly associated to the lifespan QTL (RAD-seq marker 46347).

p values for differential survival compared to individuals with the GRZ/GRZ genotype in log-rank tests are indicated. See also Table S6B for complete statistical

analyses.
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Figure S7. The Lifespan QTL Region Contains Genetic Variation between the GRZ and MZM-0703 Founders and Is Linked to the Sex-

Determining Region, Related to Figure 7

(A) Barplot depicting the predicted effect of SNPs in the region underlying the lifespan QTL. Note that there are both coding and non-coding variants between the

GRZ and MZM-0703 founders (P0). The majority of annotated variants in the lifespan QTL region is not expected to impact protein sequence, but may have

regulatory impact.

(B) Genes in the region underlying the lifespan QTL in LG-3 that have variants between the GRZ and MZM-0703 cross founders at conserved sites. Amino-acid

variants are from next-generation sequencing genotyping in GRZ, MZM-0703, and MZM-0403 individuals. Only positions with similar variants in the MZM-0703

cross founder and in the resequencedMZM-0403 individual were considered. The line for theGRN gene is highlighted in red, because ofGRN implication in aging

and age-related diseases. See also Table S7A.

(legend continued on next page)
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(C and D) Multiple alignment around residues with variants of interest at GRN residues 151 (C) and 449 (D). Orthologs in selected fish species and human are

displayed. The residues of interest are shaded.

(E) Multiple alignment of GRN around the 449th amino-acid of the turquoise killifish protein sequence in laboratory strains, wild-caught fish, and selected

vertebrate species. The alignments for the turquoise killifish, platyfish, zebrafish and human protein sequences are the same as in Figure S7D. The turquoise

killifish 449 amino-acid position is shaded in gray. The conserved amino-acid in the alignment is a cysteine (C), but GRZ carries a tryptophan (W). For wild-caught

fish, the amino-acid corresponding to the major allele is reported (out of the five sequenced individuals from each geographical location). Full genotypes of

individuals determined by Sanger sequencing are reported in Table S7F.

(F) Measure of suppressed recombination by allelic distortion between the male and female F2 progeny at each marker on selected linkage groups. Genotype

distortion is observed on LG-3, but not on other LGs. Values are reported for the frequency of males minus frequency of females carrying both alleles from the

longer-lived grandparent (blue), one allele from the longer-lived and one from the shorter-lived grandparent (green) or both alleles from the shorter-lived

grandparent (red). LG-4 is shown as a representative non-sex linked control linkage group.

(G) Manhattan plot of measure of suppressed recombination by allelic distortion between the male and female F2 progeny at each marker on the whole linkage

map. Markers on different linkage groups are represented by random alternating colors. The frequency of males minus frequency of females carrying both alleles

from the shorter-lived grandparent (e.g., corresponding to the red line in Figure S7F) is subtracted from the frequency of males minus frequency of females

carrying both alleles from the longer-lived grandparent (e.g., corresponding to the blue line in Figure S7F).

S12 Cell 163, 1539–1554, December 3, 2015 ª2015 Elsevier Inc.



 

Cell 

Supplemental Information 

The African Turquoise Killifish Genome 

Provides Insights into Evolution 

and Genetic Architecture of Lifespan 

Dario Riccardo Valenzano, Bérénice A. Benayoun, Param Priya Singh, Elisa 

Zhang, Paul D. Etter, Chi-Kuo Hu, Mathieu Clément-Ziza, David Willemsen, 

Rongfeng Cui, Itamar Harel, Ben E. Machado, Muh-Ching Yee, Sabrina C. Sharp, 

Carlos D. Bustamante, Andreas Beyer, Eric A. Johnson, and Anne Brunet 

  



 

Supplemental Experimental Procedures 

 

Fish housing and husbandry  

Fish were raised at 25°C in a centralized filtration water system at a density of up to 1 fish per 1.4L in 2.8L 

and 9L tanks. Fish were fed freshly hatched Artemia nauplii until 3 weeks of age and then dried bloodworm 

(Chironomous sp.) twice a day during the week and once a day during weekends. Adult fish spawned on a 

sand substrate in 2.8L and 9L tanks within the centralized filtration system. Dead fish were removed daily 

from the tanks, weighted, and stored in 50 mL of 100% ethanol. Embryos were collected on a weekly basis 

and plated on sterile dry peat moss until they were ready to hatch. Once ready to hatch, indicated by the 

presence of a distinct yellow iris in the eye and by continuous body twitching within the chorion, embryos 

were immersed in a 4
o
C Yamamoto embryo solution (17 mM NaCl, 2.7 mM KCl, 2.5 mM CaCl2, 0.02 mM 

NaHCO3 pH 7.3) (Rembold et al., 2006) supplemented with peat moss extract and oxygen tablets. Hatched 

fry were placed in 0.2-gallon tanks at the density of 5 fry per tank and fed with brine shrimp nauplii.  

 

Koeppen-Geiger analysis of climate 

Data on annual precipitation and temperature were collected in 102 meteorological stations from 

http://en.climate-data.org/ and were used to compute a Koeppen-Geiger climate classification in 

southeastern Africa according to the classification by Peel (Peel et al., 2007).  

 

Next-generation sequencing of the turquoise killifish genome 

Genomic DNA was isolated from tissues (muscle or tail) of 9 African turquoise killifish individuals (8 

males and one female) from the inbred reference strain GRZ. The predominance of male individuals allows 

a more comprehensive survey of the genome of this species, because males are heterogametic in this 

species (Kirschner et al., 2012; Valenzano et al., 2009). Ten libraries with varying insert sizes were 

constructed for Illumina sequencing as indicated in the table below from 9 independent GRZ fish (one fish 

was used to build two libraries). Genomic sequences for de novo assembly were generated on Illumina 

HiSeq2000 instruments (Beijing Genome Institute, University of Oregon, and Stanford Center for 

Genomics and Personalized Medicine). Paired-end libraries were obtained as 2x101bp raw reads, and mate-

pair libraries were obtained as 2x50bp raw reads. All genomic sequencing libraries have been deposited to 

SRA (SRP041421).  

 

Library Insert 

size  

(bp) 

Strategy Total QC length 

(bp) 

Coverage 

(X)
a
 

Center Sex 

BGI170 170 Paired-end 24,461,613,765 12.23 BGI M 

BGI500 500 Paired-end 27,538,490,563 13.77 BGI M 

GRZ340 340 Paired-end 9,892,583,577 4.95 Stanford M 

GRZ540 540 Paired-end 3,856,857,526 1.93 Stanford M 

RADGP0 200 Paired-end 1,892,127,538 0.95 Oregon F 

RADAAP0 200 Paired-end 1,032,838,324 0.52 Oregon M 

GRZ300 300 Paired-end 22,661,204,008 11.33 Stanford M 

GRZ400 400 Paired-end 22,531,661,933 11.27 Stanford M 

BGI2K 2,000 Mate-pair 32,648,404,824 16.32 BGI M 

BGI5K 5,000 Mate-pair 12,742,324,364 6.37 BGI M 

  Total 159,258,106,422 79.63   
a
 coverage estimate based on a conservative genome size estimate of 2Gb (see below). Note that the total 

coverage estimate ranges from 72.4X (for the maximal genome estimate of 2.2Gb) to 122.5X (for the 

minimal genome size estimate of 1.3Gb). 

 

http://en.climate-data.org/


 

Read quality filtering and trimming for de novo genome and transcriptome assembly 

Sequencing reads in all Illumina libraries for de novo genome and transcriptome assembly were quality 

filtered and trimmed using the trim_galore software 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), with a Phred score threshold of 30 and a 

minimum remaining read length of 50bp in either read of the pair after trimming. Due to nucleotide 

composition biases at the beginning of sequencing reads, all reads were also further trimmed of their first 

four most 5’ bases using fastx_trimmer (http://hannonlab.cshl.edu/fastx_toolkit). 

 

Genome size estimate from Illumina sequencing libraries 

Genome size was estimated using two independent methods. The first method was based on (Li et al., 

2010). Briefly, 25-mer frequencies were counted using the Jellyfish software (Marcais and Kingsford, 

2011) and the corresponding maximum k-mer frequency was graphically determined. Genome size was 

estimated using the count of base pairs in the used reads, the mean length of the quality-trimmed reads, and 

the maximum k-mer frequency. With this method, the turquoise killifish genome size was estimated to be 

1.9-2.2Gb, taking into account three independent libraries (GRZ300, GRZ340 and GRZ400).  

The second method used the preqc module in SGA (Simpson, 2014). This method also takes a k-

mer frequency approach, but accounts for sequencing error rates, potential heterozygous sites, and effect of 

repeat sequences (Simpson, 2014). The preqc module (SGA v 0.10.13) was run on three independent 

libraries (BGI170, GRZ300 and GRZ340). The genome size was estimated to be 1.3-1.6Gb by this method. 

Thus, the computational estimate of the turquoise killifish genome size ranges from 1.3-2.2Gb. This is 

consistent with (Reichwald et al., 2009). Based on this range, the percentage of genome assembled is 

83.1% to 49.1%, respectively. In the manuscript, we use a conservative genome size estimate of 2Gb 

(~54% of genome assembled, with ~80 fold coverage). 

 

De novo genome assembly with SGA and SOAPdenovo 

The overlapping 170bp Illumina paired-end library was preprocessed to obtain bona fide longer sequence 

fragments using FLASH (Magoc and Salzberg, 2011). The length distribution of output fragments was 

compatible with the library specifications. SGA v0.9.19-10 (string graph assembler) (Simpson and Durbin, 

2012) was applied to the filtered pre-processed Illumina paired-end libraries to obtain a high-quality master 

assembly. We chose SGA as our main contig assembler because of its lower reported rate of 

missassemblies compared to other assemblers (Salzberg et al., 2012). Final assembly parameters in SGA 

were a correction k-mer of 51, an overlap length of 65bp in the string-graph, and a merging overlap length 

of 75bp to generate the contig assembly. Parameters to the sga-assemble function were set to “-d 0.2 -g 0.1 

-r 10” to account for potential indels and SNPs in the paired-end (PE) libraries (constructed from 7 

independent GRZ individuals, 6 males and 1 female), in the range recommended in the software 

instructions. 

A second assembly was obtained using the de Bruijn graph assembly SOAPdenovo V1.05 (Luo et 

al., 2012), with an assembly k-mer of 81 and using the error-corrected reads from the sga pipeline, 

requiring support of 5X coverage and minimum assembled length of 200bp for contig reporting. 

 

Scaffolding, GapFilling and assembly reconciliation 

Scaffolding was performed on the SGA and SOAP assemblies using the SSPACE Basic v2.0 scaffolder 

(Boetzer et al., 2011). All paired-end and mate-pair librairies (10 libraries total) were inputted in 

hierarchical size order, requiring support of  5 independent pairs to create a scaffold link. Parameters were 

set to: no contig extension, a 0.7 maximum link ratio, only 1bp allowed gap for alignment, and reporting 

only contigs longer than 200bp. Gap-filling was conducted on the scaffolded assemblies using GapFiller 

v1.10 (Nadalin et al., 2012) inputting all paired-end and mate-pair libraries in hierarchical size order. 

Parameters were set to: a minimum overlap with the gap of  31bp, a minimum of 5 supporting reads, a 

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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minimum of 15bp overlap to merge sequences of a closing gap, a 15bp trimming, a 50bp gap-close 

difference, a base ratio of 0.7, all over 10 iterations. 

Because of different biases associated with each assembly algorithms (Earl et al., 2011; Salzberg 

et al., 2012), assembly reconciliation was performed using the SGA assembly as ‘master’ assembly and the 

SOAP assembly as ‘slave’ using GARM v0.7 (Soto-Jimenez et al., 2014). Assembly reconciliation is 

known to improve upon individual assemblies by leveraging their different strengths (Soto-Jimenez et al., 

2014; Yao et al., 2012). Gapfilling and scaffolding were run again on the output to refine unresolved 

regions. The reconciled assembly had increased contiguity over the starting SGA or SOAP assemblies, as 

measured by a higher N50 statistic (118kb vs. 66kb or 31kb, respectively), a lower number of scaffolds 

(46,729 vs. 565,630 or 203,468, respectively). The reconciled assembly also had a higher number of 

complete core eukaryotic genes according to CEGMA (Parra et al., 2007) (223 vs. 219 or 217, respectively; 

see below). The final assembly has been deposited in Genbank under accession number JNBZ00000000 

(first version, referred to as NotFur1 assembly). The turquoise killifish genome browser is at 

http://africanturquoisekillifishbrowser.org.  

 

Assessment of completeness of the draft genome using CEGMA 

The CEGMA algorithm (Parra et al., 2007) was applied to the turquoise killifish draft genome to gain an 

estimate of the completeness of the genome as well as initial gene models for these core eukaryotic genes 

(CEGs) (i.e. proportion of a conserved eukaryotic core genes present in the draft genome).  

 

De novo transcriptome assembly using Oases 

Strand-specific RNAseq libraries from GRZ adult individuals were constructed from liver, brain, testes and 

tail tissues using the standard Illumina protocol. The liver and testes libraries were polyA-selected, and the 

brain and tail libraries were rRNA-depleted (Harel et al., 2015). Libraries were sequenced on Illumina 

HiSeq2000 machines, as paired-end 101bp reads. After read quality preprocessing (see above), libraries 

were run through FLASH to provide extended merged reads as well as unmerged remaining paired reads. 

De novo transcriptome assembly was performed using the Oases de Bruijn graph-based algorithm (oases 

v0.2.06, and velvet v1.2.03 dependency) (Schulz et al., 2012). Assemblies were generated using a k-mer 

range of 43 to 91 and a step of 4, and keeping only assembled sequences longer than 200bp with supporting 

evidence of  5X coverage. Transcriptomes from the four different tissues were assembled separately. 

Resulting tissue-specific assemblies were then merged, and redundantly assembled transcripts were 

eliminated using uclust (Edgar, 2010) and cdhit-est cluster (Li and Godzik, 2006), asking for 90% 

reciprocal sequence homology. Resulting transcripts constituted our reference transcriptome assembly.  

 

Higher-order scaffolding using RNA-seq data and RAD-seq linkage map 

The raw reads from our Illumina paired-end RNA-seq libraries were used for higher-order scaffolding over 

potentially unresolved introns. The tophat-fusion pipeline (Kim and Salzberg, 2011) was used to identify 

read pairs mapping over 2 different scaffolds. Mapping was run for each library as: ‘tophat2 --bowtie1 --

fusion-search -m 1 -g 5 --fusion-multipairs 1 -o ./OUTPUT-DIR/ --solexa-quals -p 4 -r 100 --mate-std-dev 

50 --no-coverage-search --no-mixed --segment-length 55 index_name RNAseq_file_1.fq 

RNAseq_file_2.fq’. The ‘fusion.out’ output file was parsed to filter pairs to retain only putative high-

confidence links between scaffolds (more than 20 supporting pairs and no contradicting pairs, or more than 

50 supporting pairs and less than 1% contradicting pairs). Scaffolding was performed using high-

confidence putative links between scaffolds and by stringently filtering out links that could be ambiguous 

or hard to resolve (e.g., links potentially resulting from alternative splicing). The orientation determined by 

Tophat for the fusion according to the RNA-seq mapping (forward-forward, reverse-reverse, forward-

reverse, reverse-forward) was used to orient the scaffolds with respect to one another. An AGP format file 

(https://www.ncbi.nlm.nih.gov/assembly/agp/AGP_Specification/) was generated to summarize the 

scaffold links and placement, and is available for download on the genome browser website. 

 

http://africanturquoisekillifishbrowser.org/
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 To perform even higher-order scaffolding on the RNA-seq scaffolded assembly, the linkage map 

from cross GxM (see below) was used. First, RAD-seq markers were mapped in fasta format to the genome 

using bowtie1. The alignment file was parsed to extract information on captured genomic scaffolds and on 

their relationships with mapped markers to build a scaffolding roadmap. During parsing, markers that led to 

contradictory or ambiguous links that could not be resolved were discarded. A limit resolution confidence 

threshold of 5cM was used to resolve conflicts arising between assembled genomic contigs and mapping 

sequence: below 5cM, the genomic order was preferred; above 5cM, the genetic map was preferred. 

Captured scaffolds were then ordered according to the genetic linkage map using an AGP format output. 

The rest of the scaffolds were considered ‘unplaced’ in the assembly and annotated as such in the final 

AGP output file. This file is available for download on the genome browser website. 

 

Estimate of unresolved repeats in draft assembly 

Genomes with a high-repeat content are known to yield relatively fragmented drafts when assembled using 

short-read sequencing technology (Treangen and Salzberg, 2012). A previous assessment estimated that the 

turquoise killifish genome contained at least 45% of repetitive sequences (Reichwald et al., 2009). We 

examined regions of the genome with an excess fold coverage compared to the expected coverage from the 

libraries (Figure S1A). This was done based on the conservative genome size estimate of 2Gb. A small 

portion of the assembly captured a large portion of the reads. For example, regions that have 10 times the 

expected coverage (i.e. mean coverage based on depth of sequencing and used genome size estimate) 

represent 1% of the genome assembly but capture 17.4% of reads (Figure S1A). Regions with excess 

coverage likely correspond to unresolved repeats that are present in many copies in the actual genome 

sequence (Treangen and Salzberg, 2012).  

 

Analysis of repetitive sequences in draft assembly 

The annotation of repetitive elements present in the assembly was performed using RepeatMasker v3.3.0 

(Smit et al., 1996-2004) and the RepBase repeat library (2012-04-18 version) (Jurka et al., 2005). We used 

RMBlast version-2.2.27 as an alignment engine, and restricted the similarity search to the library of 

elements from teleost fishes. 

 

Mapping of Sanger shotgun sequence contigs to the draft assembly 

Previously published Sanger shotgun contigs from GRZ genomic DNA were obtained from GenBank 

(accession ABLO01) (Reichwald et al., 2009). Contigs were aligned to the draft assembly using BLAT 

(Kent, 2002). The longest alignment of the contig to the genome (the best match) was then used to compute 

the aligned fraction of each Sanger contig. 

 

Annotation of protein-coding genes using the MAKER2 pipeline 

The MAKER2 pipeline was used to generate consensus gene predictions derived from ab initio predicted 

models, RNA-seq reads, de novo transcriptome assembly and EST/transcript data, and protein similarity 

(Holt and Yandell, 2011). MAKER2 predicts the most likely gene model and outputs a confidence score 

(Annotation Edit Distance, AED) to each prediction based on the degree of support by experimental 

evidence (EST/transcript mapping, RNA-seq mapping, protein homology, etc.). Several sources of 

transcriptomic sequences were generated to support gene predictions. These include: 1) published 

assembled transcript sequences from the turquoise killifish downloaded from Genbank (Petzold et al., 

2013) and ESTs from another killifish, H. fondulus (Tingaud-Sequeira et al., 2013), 2) our de novo 

assembled transcriptome sequences, and 3) our paired-end Illumina RNA-seq data from brain, liver, testes 

and tails as well as previously published RNA-seq librairies from skin and whole fish (Petzold et al., 2013). 

RNA-seq data were aligned to the masked reference genome and exon-exon junctions were modeled using 

the tuxedo suite (Trapnell et al., 2012), as recommended in the MAKER2 manual. The full-length 

transcriptome data and splice junctions were used as transcript evidence in the MAKER pipeline. In 

addition to the transcript sequences, the complete reference proteomes of Danio rerio, Oryzias latipes and 



 

Takifigu rubripes were downloaded from Uniprot (on 05-30-2013) to provide the MAKER pipeline with 

protein homology evidence. The MAKER pipeline also incorporates a repeat masking step before running 

gene predictors, and the teleostei repeat library from the RepBase database (2012-04-18 version)  (Jurka et 

al., 2005) was used for this step (see above). The discovery of single-exon genes was enabled, though it is 

disabled by default in the pipeline, to allow for the discovery of potentially important mono-exonic genes. 

MAKER aligns transcript and protein evidence to the genome using the sensitive/specific splice site-aware 

alignment algorithm exonerate (v2.2.0) (Slater and Birney, 2005). Alignments retained by the MAKER 

pipeline have > 20 score, do not overlap low-complexity regions, and were used to estimate the proportion 

of transcripts mapping to the assembly with high quality. 

The ab initio predictor SNAP (Semi-HMM-based Nucleic Acid Parser) was first trained 

specifically for the turquoise killifish using CEG models from the output of CEGMA (Parra et al., 2007). 

After a first run of the MAKER pipeline, gene models with an AED score of 0 (most supported by RNA or 

protein evidence) were then used to retrain SNAP for a second round to obtain a higher quality hidden 

Markov model. Ab initio predictor Augustus was then trained using AED=0 gene models from this second 

run, using the included zebrafish model parameters as a starting point to create a turquoise killifish-specific 

gene prediction model. We then performed a third and last run of the MAKER pipeline with all evidence 

support, enabling gene prediction from transcript sources (i.e. exonerate alignment of transcripts and 

Cufflinks junctions) and from trained ab initio gene predictors (i.e. Augustus and SNAP). In this final run, 

61,418 putative protein-coding gene models were predicted by MAKER at any AED threshold (0-1). Gene 

model filtering steps and annotation of protein coding gene models by sequence orthology are described 

below. 

 

Analysis of alignment of turquoise killifish transcripts and RNA-seq to the draft genome 

Long assembled transcripts from a published catalog (Petzold et al., 2013) and from our de novo assembled 

transcriptome were used to assess the quality of our genome assembly. Transcript alignments were 

performed and filtered based on quality using MAKER, which uses exonerate (v2.2.0), an alignment 

algorithm that is sensitive, specific, and splice site-aware (Slater and Birney, 2005). Alignments retained by 

MAKER have > 20 score and do not overlap low-complexity regions. They were used to assess the 

proportion of transcripts mapping with high-quality to the genome assembly. The remaining transcripts that 

were not part of this high-quality set were then mapped to the genome using BLAT (using the -trimHardA -

trimT -extendThroughN options), and transcripts with at least one partial hit to the genome were quantified. 

 Illumina paired-end RNA-seq reads from adult turquoise killifish tissues (SRP041421) were 

aligned to our reference draft genome using bowtie 0.12.7 and TopHat2 v2.0.4 (Trapnell et al., 2012). 

Alignments were retained only if they mapped to at most three loci in the assembly (-g 3). Statistics of 

percentage of mapped reads and proper pair orientations were obtained from the resulting alignment files 

using samtools (v 0.1.17). 

 

Alignment of transcripts to proper paralogs for specific genes 

For selected genes, we determined independently proper mapping of transcripts to different paralogs (Table 

S4I). In these cases, the corresponding annotated transcripts from the published catalog of assembled 

turquoise killifish transcripts (Petzold et al., 2013) were downloaded from the NFIN website 

(http://nfintb.fli-leibniz.de/nfintb/). Sequences were mapped using BLAT (-trimHardA -extendThroughN -

fine options), and alignments were visualized using our genome browser (Table S4I). 

 

Annotation of ribosomal RNA genes and short non-coding RNA genes 

RNAmmer (Lagesen et al., 2007) was used to annotate high-quality rRNA genes. tRNAscan-SE (Lowe and 

Eddy, 1997) was used to annotate high-quality tRNA genes. Putative tRNA with a non-conventional 

anticodon, or labeled as likely pseudogenes by the software, were discarded from the high-confidence 

tRNA gene predictions. Annotated tRNA gene type and distribution per anticodon are reported in Table 

S1A. Infernal (Nawrocki and Eddy, 2013) was used to annotate putative snRNA, snoRNA and miRNA 

http://nfintb.fli-leibniz.de/nfintb/


 

genes. All programs were run with default settings. RepeatMasker also provided secondary predictions of 

rRNA, tRNA and snRNA genes, and Infernal provided secondary predictions of tRNA genes.   

 

Annotation of long non-coding RNA genes 

Illumina paired-end RNA-seq reads from adult turquoise killifish tissues (SRP041421) were aligned to the 

reference draft genome using bowtie 0.12.7 and TopHat2 v2.0.4 (Trapnell et al., 2012). Alignments were 

retained only if they mapped to at most three loci in the assembly (-g 3). De novo transcriptome assembly 

guided by the genome was performed using cufflinks2 v2.1.1, using the predicted protein-coding gene as 

prior information, and with a maximum pre-mRNA fraction parameter set at 0.1 (-j 0.1). Previously 

identified transcripts from predicted protein-coding genes were excluded from subsequent steps.  

Next, the EMBOSS software suite was used to predict the longest ORF in each of the remaining 

predicted transcripts (Mullan and Bleasby, 2002). Transcripts longer than 150bp, with at least 5X 

sequencing coverage in one library, and whose longest predicted ORF was strictly shorter than 50 amino-

acids, were retained for further processing. Finally, as a stringent cutoff, we filtered the putative lncRNA 

genes to retain only those with an H3K4me3 peak, indicative of promoter activity, in an H3K4me3 ChIP-

seq dataset from turquoise killifish adult brain (SRP045718) (Harel et al., 2015). 

 

Ortholog identification and gene model annotation 

To further annotate protein-coding genes from all the 61,418 MAKER gene predictions and exclude 

spurious predictions and untranslated sequences, we used homology-based evidence from 19 fully 

sequenced genomes (Table S2B), including seven additional fish genomes. Protein sequences for all the 

organisms were downloaded from Ensembl (release 75) (Cunningham et al., 2014) using BioMart (Kinsella 

et al., 2011). The sea urchin proteome was downloaded from Ensembl Metazoa. For genes with multiple 

protein products due to alternative splicing, only the longest protein was used. 

An all-against-all BLASTp search was run using an e-value of 10
-5

. Both best and bidirectional 

best hits for every turquoise killifish protein in each of the analyzed genome were determined. In addition, 

a BLASTp search against NCBI nr (all non-redundant protein sequences) was performed using all the 

predicted turquoise killifish proteins. We discarded 32,924 predicted turquoise killifish genes whose 

protein product did not have either a match in at least two organisms or a match in NCBI nr with at least 

30% query coverage, leading to a final set of 28,494 killifish protein coding genes. These genes were 

divided into three tiers of confidence levels based on the homology evidence from all of the other genomes. 

Turquoise killifish genes with bidirectional best hits in at least 10 analyzed organisms were considered 

Tier-1 (10,329 genes). Turquoise killifish genes with bidirectional best hits in less than 10 organisms, but 

with homologous sequences in at least 10 genomes, were considered Tier-2 (12,192 genes). Turquoise 

killifish genes with a BLASTp hit in less than 10 organisms, and a best hit with NCBI nr database, were 

considered Tier-3 (5,973 genes). Tier-1 and Tier-2 genes represent the high quality gene prediction in the 

current assembly, and are considered high-confidence protein coding genes (Figure 2B). 

Turquoise killifish genes from all the three tiers were assigned a gene symbol based on the 

consensus symbol from all the genomes having a homologous sequence. In cases where a consensus gene 

symbol could not be reached, preference was given to the gene symbols supported only by the 7 teleost fish 

genomes. If still no consensus gene symbol could be identified, the gene symbol was chosen from 

organisms in the following order of priority: human, mouse, zebrafish, and medaka. For multiple genes 

with the same gene symbol (possible gene duplicates), a number was assigned randomly to each (‘NofN’). 

Finally, an ID was assigned to each protein (Figure S1G) and long non-coding RNA genes (Figure S2E). 

This ID contains information about the scaffold, synteny, and number of organisms having a homolog of 

the gene, or for the lncRNA, the tissues where the gene is expressed. 

 

Gene family analysis 

To construct gene families in turquoise killifish and medaka, an all-against-all BLASTp was run using all 

the filtered turquoise killifish and medaka proteins (e-value < 10
-5

). The hits were then clustered at 5 



 

similarity thresholds (50 to 90) to generate gene families using TransClust (Wittkop et al., 2010). Using the 

resulting families with at least one gene from both the organisms, we performed linear regression without 

an intercept term in R. As a control, an identical analysis was performed between platyfish and medaka 

proteins. A good correlation genome-wide between gene families indicates proper assembly of paralogs. 

Differences in the paralog numbers of specific families between killifish and medaka could be due to 

evolutionary events such as lineage specific gene duplication or to loss misassembly/misannotation in one 

of the species. 

 

Computation of codon usage 

All high-quality annotated protein-coding genes (Tiers 1, 2 and 3) were used to estimate codon-usage in the 

turquoise killifish. The R (http://cran.r-project.org) package ‘seqinr’ (Charif and Lobry, 2007) was used to 

compute codon usage from the corresponding coding sequences (Table S1B).  

 

Metagene profiles for RNA-seq and metapromoter profile for H3K4me3 ChIP-seq 

For metagene analysis of RNA-seq, normalized aligned read counts were extracted around the annotated 

TSSs (-tss option), gene bodies (-rna), or TTSs (-tts) using the ‘annotatePeaks.pl’ script from the HOMER 

suite (Heinz et al., 2010) with ‘-hist’ option and with the final annotation gff3 file for the turquoise killifish 

genome. Average values are used to plot the metagene profiles.  

For metapromoter analysis of H3K4me3 ChIP-seq, normalized aligned read counts were extracted 

around the annotated TSSs (-tss option) using the same method as above. Average values are used to plot 

the metapromoter profile.  

 

Analysis of RNA-seq data for transposase expression  

Our de novo assembled transcriptome was used to obtain transcript reference sequences derived from 

independent transposon insertions of the same family. We mapped reads to the transcriptome instead of the 

genome because genome-based quantification of RNA expressed from transposable elements is 

problematic due to ambiguous mapping of reads to the genome. Transposon-derived transcripts were 

annotated using BLASTp hit to the NCBI nr database or using predicted domains from the NCBI conserved 

domains database (http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml). The RNA-seq reads were 

mapped to the reference transcriptome using Tophat2, supported by bowtie1 (Trapnell et al., 2012). 

Aligned reads over transcripts were counted using the bedtools suite ‘coverageBed’ command. Read counts 

were normalized by transcript length and library size to obtain final FPKM values.  

  

Synteny analysis 

To build whole genome synteny maps, genomic scaffolds were assigned to specific RAD-seq markers 

along the linkage map using BLAT. Linkage groups for the turquoise killifish were then represented as a 

linear series of scaffolds matching the RAD-seq markers (not oriented). Coding sequences matching each 

mapped scaffold were then extracted using a GTF file of the turquoise killifish annotated genes, and a new 

file was built containing gene names along the mapped scaffolds. Medaka, stickleback, and platyfish GTF 

files were obtained from ftp://ftp.ensembl.org/pub/. The ordered linkage groups in the turquoise killifish 

were matched to the medaka and platyfish chromosomes based on reciprocal best BLASTp hits (turquoise 

killifish/medaka synteny), or on identical gene names (platyfish/medaka synteny). High quality protein 

genes from Tier 1 and Tier 2 were used for the turquoise killifish. Matching pairs of genes between species 

were plotted using either the turquoise killifish linkage map position or the platyfish chromosome position 

on the y-axis and the medaka chromosome position on the x-axis (OxGrid plot). 
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Construction of the species tree 

For the generation of the species tree, we selected all the 619 one-to-one orthologs from each of the 

organisms where the same killifish gene was the reciprocal best BLASTp hit in each of the 19 animal 

genomes. These genes represent the entire set of high confidence one-to-one orthologs for the 20 

organisms, including turquoise killifish, in our analysis (Table S2A). Known aging-related genes are well 

represented in this list (see Table S2C). A single long sequence for each organism was constructed by 

concatenating these 619 proteins in the same order. The sequences were then aligned using MAFFT (Katoh 

and Standley, 2013). The conserved blocks were identified from the corresponding multiple sequence 

alignment to remove non-conserved or misaligned regions using Gblocks (Talavera and Castresana, 2007). 

ProtTest (Darriba et al., 2011) was used to identify the best model (LG+G+I) for construction of 

phylogeny. A maximum likelihood tree was then constructed using PhyML v3.1 with 100 bootstrap steps 

for statistical support (Guindon et al., 2010). We used discrete Gamma model with 4 categories (shape 

parameter: 0.821) and allowed PhyML to estimate the proportion of invariant sites (0.066). The resulting 

unrooted tree was rooted in MEGA-6 based on C. elegans as the outgroup. Phylogeny based on neighbor-

joining (Tamura et al., 2013) produced identical topology. 

 

Phylogenetic trees for specific gene families 

The predicted protein sequence corresponding to a specific turquoise killifish gene was used to identify best 

BLASTp hits in the proteomes of 7 fish species. Hits for medaka, stickleback, Tetraodon, Takifugu, cod 

and zebrafish were obtained from the UCSC/ENSEMBL portals if available; if not, the best BLASTp hits 

from NCBI nr database were used. The best hits for platyfish protein sequences were always obtained using 

BLASTp hits against NCBI nr.  

Protein sequence alignment was performed using ClustalX v2.1. PHYLIP proml v3.695 was used 

to build trees, using zebrafish sequences as the outgroup. The plots were generated as rooted phylograms 

using Unipro UGENE v1.17.0.  

 

Identification of turquoise killifish genes under positive selection 

To identify genes in the African turquoise killifish lineage that are under positive selection, we used PAML 

(Phylogenetic Analysis by Maximum Likelihood, version 4.8) (Yang, 2007; Yang and Nielsen, 2002), 

which implements a maximum likelihood framework to evaluate adaptive selection based on non-

synonymous by synonymous substitution rate ratio (KA/KS, DN/DS or ω ratio). We used a branch-site model 

implemented in PAML to identify individual amino-acid sites targeted by positive selection in the turquoise 

killifish branch using 7 other long-lived fish species as a background (Figure S3A).  

First, single ortholog gene families were selected from the eight teleost fish genomes (including 

the turquoise killifish) where a clear bidirectional best hit with the same turquoise killifish gene was present 

in at least four other fish genomes. Hence, we required at least 5 fish sequences including the turquoise 

killifish for further analysis, leading to a set of 13,637 ortholog families. These sequences were aligned 

using PRANK (Loytynoja and Goldman, 2005) (codon model incorporated in GUIDANCE (Penn et al., 

2010)), an algorithm known to generate highly accurate alignments to detect positive selection (Fletcher 

and Yang, 2010; Jordan and Goldman, 2012). Since alignment quality is one of the critical steps in accurate 

detection of positive selection, we applied stringent filtering using GUIDANCE (Penn et al., 2010), which 

is known to be a highly accurate alignment quality-control package for such analysis (Jordan and Goldman, 

2012). The following (local and global) stringent filters were applied on each alignment using 

GUIDANCE: mean residue pair score > 0.85 (indicative of the overall alignment quality), mean column 

score > 0.85 (indicative of the overall alignment quality), no individual sequences with score < 0.85 

(indicative of the sequences that may lead to bad alignment quality) and no sequence-pairs with score < 

0.85 (indicative of the sequence pairs leading to bad alignment).  

For the alignments that passed our quality filters, we used the branch-site model implemented in 

CODEML that is designed to detect positive selection that affects only a few sites on the specified branches 

of a phylogeny. On the species tree of the eight fish genomes, the turquoise killifish lineage was marked as 

‘foreground’ and the rest of the fish species as ‘background’ lineages (Yang, 2007; Yang and Nielsen, 



 

2002). We then performed a likelihood ratio test between model M2a_null (model = 2, NSsites = 2; 

fix_omega = 0) and M2a_selection (model = 2, NSsites = 2; fix_omega = 1, omega = 1) as recommended 

(PAML User Guide: http://abacus.gene.ucl.ac.uk/software/pamlDOC.pdf).  

A p-value to assess the significance of the likelihood ratio test was calculated using χ
2 
test for 

twice the difference of likelihood from model M2a_selection versus likelihood M2a_null, with one degree 

of freedom. We used Bayes Empirical Bayes (BEB) probabilities provided by CODEML to identify 

individual sites under selection (Yang et al., 2005). However, we further excluded the selected sites if the 

GUIDANCE column score for the site under selection was less than 0.85 or if there was a gap in the 

alignment (in any sequence) within +/- 5 amino-acids from the selected site, even if the BEB probability 

value was significant. This stringent filter was introduced to ensure that the sites under selection are in the 

well-aligned regions. Finally, we subjected the p-value of the likelihood ratio test to multiple hypothesis 

correction in R by Benjamini–Hochberg method and identified the genes with significant overall p-value at 

5% FDR (p < 0.05).  There were 497 genes under positive selection with a corrected overall p-value < 0.05 

(Table S3B). To generate an even more stringent list, we restricted the genes to those with at least one site 

with BEB probability of selection > 0.95, which led to 249 genes (Table S3A). The ‘highest confidence’ 

list of 249 genes was used for GO enrichment analysis, functional effect prediction and overlap with genes 

under selection in extremely long-lived vertebrates. The list of 497 genes was used to assess the overlap 

with aging genes in vertebrate model organisms from the GenAge and LongevityMap databases. 

While we designed our analysis to identify the genes and residues under positive selection with 

high confidence, there may be additional genes/sites under selection that are missed or some false positives 

due to inherent limitations of this kind of analysis (e.g. misalignment of codons, choice of background 

species, missing exons due to alternative splicing, parameter sensitivity of likelihood ratio calculations, 

etc.). In general, the false positive rate of branch-site tests ranges from 4 to 6.4% (Wong et al., 2004; Yang 

and dos Reis, 2011). 

 

GO enrichment analysis of genes under positive selection 

Gene Ontology (GO) terms for the predicted killifish genes were obtained by attributing the corresponding 

GO terms of zebrafish genes to their one-to-one orthologs in the turquoise killifish genome. GO enrichment 

analysis for the stringent list of 249 genes under positive selection was performed in R (version 3.1.1) using 

‘GOstats’ package (Falcon and Gentleman, 2007). We used all the filtered 13,637 genes as background and 

employed hyper-geometric test implemented in GOstats to obtain the significantly enriched terms after 

Benjamini-Hochberg correction for multiple testing, and filtering out the terms that showed significant 

depletion from the results. Selected GO terms with p-values, number of genes, and enrichment values ≥ 2 

fold from the top enriched GO terms are shown in Figure 3C. 

 

Overlap between genes under positive selection in the turquoise killifish and genes that change in 

expression with age 

For analysis of the publicly available brain aging dataset (MZM-0410 strain) (Baumgart et al., 2014), the 

STAR ultrafast universal RNA-seq aligner (Dobin et al., 2013) was used. Reads over gene models were 

counted using the featureCounts feature of Subread package (Liao et al., 2014). Library size adjustment and 

dispersion normalizations were performed using the R ‘DEseq2’ package (Love et al., 2014). DESeq2 was 

used to model expression changes as a function of the age of the fish (5, 12, 20, 27 and 39 weeks). 

Differentially expressed genes according to that model were called at FDR threshold of 5%. The list of 

differentially expressed genes was overlapped with the list of 249 positively selected genes in the turquoise 

killifish. Enrichment was measured by a Fisher test on expressed genes. Expression levels of genes of 

interest were plotted as a heatmap using the ‘pheatmap’ package in R (http://cran.r-

project.org/web/packages/pheatmap/index.html). 
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Turquoise killifish orthologs of aging-related genes from GenAge and LongevityMap  

Aging-related genes in mouse or human were downloaded from the GenAge database (Built 17) (de 

Magalhaes et al., 2009; de Magalhaes and Toussaint, 2004). Genes with longevity variants in human were 

obtained from the LongevityMap database (Budovsky et al., 2013) after excluding all the non-significant 

variants. We used the turquoise killifish orthologs from either the mouse or human genes in the all-against-

all BLASTp analysis from all 20 organisms, as described above. These lists are included in Table S4A.  

 

Prediction of functional impact of turquoise killifish variants 

To determine the residues under positive selection in the turquoise killifish or the non-synonymous variants 

between killifish strains that have a functional impact, we used two sequence-based prediction algorithms: 

PROVEAN  (Protein Variation Effect Analyzer)  (Choi et al., 2012) and SIFT (Sorting Intolerant from 

Tolerant) (Kumar et al., 2009). For the residues under positive selection in the 249 genes that had a medaka 

ortholog in our analysis, we used the medaka protein sequences as reference, and evaluated the potential 

impact of their substitution to the turquoise killifish specific residue. We then calculated the SIFT score 

using SwissProt database and PROVEAN score using the NCBI nr database. A replacement was classified 

as ‘DELETERIOUS’ by SIFT if the prediction score is < 0.05. For PROVEAN, a score < -1.3 was 

considered to have a ‘Moderate’ effect and a score < -2.5 was considered to have a ‘Deleterious’ effect. 

After removing potential false positives, we could obtain a functional prediction for 1509 residues under 

positive selection in 199 genes from SIFT or PROVEAN (Tables S3D and S4D). 

To have a neutral reference during the prediction of functional effect using SIFT and PROVEAN, 

we also predicted the effect of residues under positive selection using the ancestral sequences for the 7 

aging genes [BAX, IGF1R(1of2), INSRA, IRS1(2of2) XRCC5, LMNA(3of3) and MGAT5(1of3)]. The 

sequences of the common ancestors of medaka, platyfish and killifish were generated using maximum-

likelihood approach in PhyloBot (http://PhyloBot.com) using zebrafish/cod/stickleback as outgroups. For 

LMNA(3of3) and MGAT5(1of3), medaka was not a part of our analysis because there was no bidirectional 

best hit to a medaka ortholog. Therefore, in these two cases, we used the sequence of the common ancestor 

of platyfish, killifish, fugu, and tetraodon. We then computed the functional impact of the killifish residues 

at the corresponding position using ancestral sequence from both SIFT and PROVEAN (Table S4E). 

To determine the potential functional impact of non-synonymous variants in aging-related genes 

between killifish strains, we used either the GRZ variant or the variant that is common between MZM-0403 

and MZM-0703 (‘MZM’) as reference points, with the other serving as alternative sequence. This yielded 4 

predictions for each considered position: effect of the MZM residue in the GRZ protein sequence context 

according to SIFT (1) or PROVEAN (2), and effect of the GRZ residue in the MZM protein sequence 

context according to SIFT (3) or PROVEAN (4). We considered that there was a predicted functional 

impact if at least one of these predictions was significant. The impact was considered higher confidence if 

both SIFT and PROVEAN predicted an impact on protein function. 

For a subset of aging and age-related genes (those for which we could map the residues under 

positive selection on the available protein structure, e.g. BAX, IGF1R(1of2), INSRA, XRCC5, and GRN), 

we used five different methods to assess protein folding/stability changes upon point mutations: ENCoM: 

http://bcb.med.usherbrooke.ca/encom.php (Frappier et al., 2015), PoPMuSiC 3.1: http://dezyme.com/ 

(Dehouck et al., 2011), I-Mutant v3.0: http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-

Mutant3.0.cgi (Capriotti et al., 2006), DUET: http://bleoberis.bioc.cam.ac.uk/duet/ (Pires et al., 2014), and 

CUPSAT: http://cupsat.tu-bs.de/ (Parthiban et al., 2006). All these methods model point mutations on 

protein structure and determine if the free energy of folding (∆∆G) is significantly different between the 

‘mutant’ (in this case, turquoise killifish residue) and ‘wild-type’ (in this case, human or mouse residue in 

the structure). If the ∆∆G value was greater than 1 between wild type and mutant, the mutation was 

considered to have a strong effect on the folding and stability of the protein. If the ∆∆G was > 0.5, it was 

considered to have a moderate effect (Tables S4F and S7H). 
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Mapping residues and variants on available protein structures or domains 

Residues under positive selection in the turquoise killifish were mapped on the available three-dimensional 

protein structures for the orthologs of 4 aging genes: INSRA, IGF1R(1of2), XRCC5, and BAX. We first 

performed a structure-based sequence alignment using the corresponding chain in the available crystal 

structure in Protein Data Bank (PDB; see accession numbers in Table S4F). To this end, we used all the 

fish species that were part of our selection pipeline, including the ancestral sequences generated by 

PhyloBot (http://PhyloBot.com), and aligned them with the corresponding chain in PDB structure using 

PROMALS3D (Pei et al., 2008). To map the non-synonymous variant with functional effect in GRN 

(W449), we aligned only the corresponding GRN domain in the turquoise killifish with the PDB structure 

of the human ortholog (Table S7H) using PROMALS3D. Corresponding residues were then mapped and 

highlighted on the PDB structures using JalView (Waterhouse et al., 2009) and PyMOL: 

https://www.pymol.org/ (see Tables S4F and S7H for details). 

There were no protein structure available for the orthologs of MGAT5(1of3) and IRS1(2of2), and 

the available structure for LMNA did not encompass the orthologous residues under selection. Therefore, 

for these proteins, we mapped the residues under selection on the predicted domains from the NCBI 

Conserved Domain search (Marchler-Bauer et al., 2015) (CDD: 

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).  

To map human variants, we obtained the position of residues associated with exceptional human 

longevity from LongevityMap (Budovsky et al., 2013; Suh et al., 2008)  (IGF1R), and  (Conneely et al., 

2012; Sebastiani et al., 2012) (LMNA). We aligned the human sequence with multiple fish sequences using 

PRANK and mapped the residues on the turquoise killifish ortholog. We obtained the residues mutated in 

LMNA in Hutchinson Gilford Progeria Syndrome via OMIM: http://omim.org/entry/150330 and UniProt: 

http://www.uniprot.org/uniprot/P02545. We also mapped residues with unique amino-acid changes in 34 

genes in the bowhead whale (Keane et al., 2015) (Table S4G) and residues with unique amino-acid changes 

in IGF1R in the Brandt’s bat (Seim et al., 2013). daf-2 alleles with the phenotype ‘extended life span’ in C. 

elegans were obtained from WormBase (http://wormbase.org, Release:WS249; Date: September 3, 2015). 

Amino-acid changes in DAF-2 were from (Patel et al., 2008) and were mapped to IGF1R(1of2) in the 

turquoise killifish. 

We obtained GRN mutations associated to neurodegenerative diseases in humans from OMIM 

(http://www.omim.org/entry/138945) and from the ‘Alzheimer Disease & Frontotemporal Dementia 

Mutation Database’ (Cruts et al., 2012). After manual inspection of the multiple protein alignments of 

human and fish sequences, we mapped the diseases mutations to the NMR structure of GRN using 

alignment by MUSCLE. Multiple alignments for ZNF800A and IFI35 were also performed using 

MUSCLE. 

 

Targeted Sanger re-sequencing of selected residues from aging-related genes  

Genomic DNA from fish tissues was extracted using 200 μL of DirectPCR Tail (Viagen Biotech Inc) with 

4 μL of Proteinase K (Invitrogen Inc). Samples were incubated at 50°C overnight, boiled at 100°C for 10 

min, and centrifuged at 8,000g for 5 min. The supernatant was directly used as a template for PCR 

reactions.  

To confirm the sequence of genes of interest around the residues that were identified to be under 

positive selection according to the reference GRZ genome, small amplicons (300-400bp) encompassing the 

residues of interest were amplified by PCR, using the GoTaq Green Master Mix (Promega) with an 

annealing temperature of 58°C. Two independent GRZ individuals were used for each analysis.  

The following primers were used for PCR amplification of genomic sequences: 

IGF1R_1of2_V121-T126_F TTTGCCCTAACACATCTCCATTC 

IGF1R_1of2_V121-T126_R GTGATGTTCCTCAGGTTGTACAG 

IGF1R_1of2_F351_F TTCTGAAACTGACCTCTTCACCT 

IGF1R_1of2_F351_R AGTGTACGTCCTTACCGATTAGT 

IGF1R_1of2_A391_F CGTTCCTCTGTCTACCTCAGTGT 

http://phylobot.com/
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IGF1R_1of2_A391_R TGAAGTGTACGTCCTTACCGATT 

IGF1R_1of2_L426-H428-L429_F ACCACTGCTAGAATTTTCAGACG 

IGF1R_1of2_L426-H428-L429_R TCTTCTCCCAAACTTTCCAGAGA 

IGF1R_1of2_Y489_F CCATGTTTGTGACCATCTGATG 

IGF1R_1of2_Y489_R CGACACCATGAAATGAGAAAAGC 

IGF1R_1of2_A843_F CCTCGCTATATTTCACTGTTTGG 

IGF1R_1of2_A843_R AAGTTTGCACATTTCCATCAAGT 

IGF1R_1of2_L1008_F AATCTGAGCCCAGGAAACTATTC 

IGF1R_1of2_L1008_R CAGAAGCACTCACCTCTTTTTGT 

IGF1R_1of2_L1305_F GTTGTATTGTGGGAAATTGCCAC 

IGF1R_1of2_L1305_R CTCTATTGGCCAACACTGATGAG 

IGF1R_1of2_S1374_F CCCATTTCAGGGAAGTAAGTTTC 

IGF1R_1of2_S1374_R ATTCATGTGTGCGTATGGTTGTA 

INSRA_N425_F AACACAAGCTAAGCATCCTGAAG 

INSRA_N425_R CAGCTTCATCACGTCTATGTTCA 

INSRA_S434-P435_F TGAAAGCGTGCTGATTCAAATTG 

INSRA_S434-P435_R TGCAACAAAGTCTAGCGATTTCT 

INSRA_V457-V459_F TTTCCCCTCCAGTTTATTTTCAT 

INSRA_V457-V459_R GCAAAGCAACAGTTTGGTCTAGT 

INSRA_N566_F CTGATGGAGACAAAGAGCGTATT 

INSRA_N566_R TCCGTGATTGACTTCCTGTTTAT 

INSRA_A705_F TAAATTCTCCCAAGTTCTGGACA 

INSRA_A705_R GGGTTTTCGCTTTTATTCAAGAT 

INSRA_P801_F AACCCCAGATGTTTTTGGTTACT 

INSRA_P801_R TATAGGATGATGATGCCGTTAGG 

INSRA_V910_F TAATTGTACCTGAATGGGGTGAC 

INSRA_V910_R TACTCAGGGTTTGAAGAGGCATA 

INSRA_T1258_F TTGTTCTGGAGCTCTAACTCACC 

INSRA_T1258_R CAGTATTCGTCCATTGGTCTTTC 

XRCC5_G888_F ACCCCTTTAACTTTGTTCTCAGC 

XRCC5_G888_R ATACAGAAAGTGGTCCGTTTCAC 

IRS1_2of2_L94_F ATGATTCAGTTGTAGCCCAGAAC 

IRS1_2of2_L94_R GCAATCCCATCCTCACCTTTC 

LMNA3_M307_I358_F  ATTTGAGAGCAAACTGGCAGA 

LMNA3_M307_I358_R  AGTAAAAGCTGTCCGAGTACCTG 

 

The presence of single PCR products was assessed on 1% TAE agarose gels, and PCR products 

were purified using the Qiagen PCR purification kit. Sequence of individuals was determined by direct 

Sanger sequencing of PCR products using the original amplification primers (MCLAB sequencing 

services). When direct sequencing of the PCR products did not work readily, the PCR products were cloned 

into the PCR4 TOPO-TA vector (Lifetechnologies), and at least two independent bacterial clones from 

each PCR were sequenced using the M13 reverse primer. Sequence analysis was done using pairwise 

BLAST alignments to the reference genomic sequence. All the tested PCR amplicons had sequences 

identical to the genomic reference around the residues of interest. 

 

Genetic variation in GRZ, MZM-0703, and MZM-0403 individuals 

To identify genetic variants among different strains of the turquoise killifish, we used next-generation 

sequencing to genotype the founders of cross GxM (GRZ female and MZM-0703 male). Ethanol-preserved 



 

tissues were used for genomic DNA extraction, library construction (200bp inserts), and paired-end 

sequencing on Illumina HiSeq2000 instruments (BGI).  

 

Library 

name 

Strain Insert size Strategy Total QC length 

(bp) 

Coverage 

(X)
a
 

Sex 

P0GFA GRZ 200 Paired-end 38,540,978,200 19.27 F 

P0GMA MZM-0703 200 Paired-end 107,816,807,600 53.91 M 
a
 coverage estimate based on a conservative genome size estimate of 2Gb. 

 

A library using genomic DNA from a male from another wild-derived strain, MZM-0403, was 

constructed at Stanford University and sequenced at the Stanford Genome Center. 

Library 

name 

Strain Insert size Strategy Total QC length 

(bp) 

Coverage 

(X)
a
 

Sex 

MZM0403 MZM-0403 300 Paired-end 12,817,270,468 6.41 M 
a
 coverage estimate based on a conservative genome size estimate of 2Gb . 

 

Quality filtered and trimmed paired-end sequencing reads were aligned to the reference genome 

using bwa v0.6.1-r104, which is a sensitive aligner recommended for variant calling from next-generation 

sequencing data (Liu et al., 2013). The GATK genotyping pipeline (McKenna et al., 2010), which was 

developed for human variant calling in the 1000 genome project, was used to call SNPs. GATK v1.6-13 

was used with underlying support from picard-tools v1.55. Briefly, PCR-duplicates were filtered out, indels 

were fine-realigned, base phred scores were recalibrated, and the unified genotyper was run. To recalibrate 

SNP scores, we assembled a benchmark SNP database using turquoise killifish SNPs from dbSNP 

(Kirschner et al., 2012) mapped to our genome as well as high quality and a catalog of high-depth SNPs 

identified by RAD-seq. GATK filters used as parameters to “-A” were: AlleleBalance, DepthOfCoverage, 

HomopolymerRun, QualByDepth, and MappingQualityRankSumTest. To minimize the rate of false 

negative calls in the library from the GRZ individual (i.e. sites present but detected with lower depth), we 

did not apply a sequencing depth cutoff in the GRZ individual (i.e. DepthOfCoverage filter), but we applied 

sequencing depth cutoffs for the MZM-0703 individual (Depth  20) and MZM-0403 individual (Depth  

5, to take into account the overall lower sequencing depth of that sample). Only variants with mapping 

quality  4 and depth  5 and low strand bias were selected, which eliminates variants that are hard to 

validate. Variants with non-straightforward allelic frequencies (i.e. not clearly homozygous or 

heterozygous) were also eliminated, as these might be artifacts of poorly resolved repetitive regions. 

Variants annotated as ‘LowQual’ by GATK were also eliminated. Variants called independently in more 

than one library are considered as higher quality variants.  

To annotate the identified variants and predict their potential function, we used the SNPeff 

pipeline (Cingolani et al., 2012) on final vcf call files and the high quality predicted gene models (Tiers 1, 2 

and 3) gff3 file. The SNPeff pipeline categorizes genetic variants based on their location with respect to 

genes (e.g. upstream (-5kb from the annotated TSS), downstream (+5kb from the annotated TTS), intronic, 

etc.), and their potential impact on the coding sequence (e.g. synonymous, non-synonymous, etc.).  

 

Genetic crosses 

One female from the GRZ strain was crossed with one male from the MZM-0703 strain (cross GxM), and 

one female from the Soveia strain was crossed with a male from the GRZ strain (cross SxG). F1 fish were 

interbred in families to generate F2 fish. 

 F1 F1 families F2 

Cross GxM 36 16 430 

Cross SxG 9 4 130 

 



 

Observed lifespan was scored as the age at death for all the fish. For this study, fish were raised in cohorts 

of mixed sexes, in the conditions described above. Note that both genetic and environmental factors affect 

the age of death. Casualties due to non-natural death causes, e.g. inter-individual aggression or occasional 

tank exclusion from the water recirculation system, were not scored as “observed lifespan” and these 

individuals were censored for the lifespan analysis. Survival analysis was done with the R package 

“survival” using Logrank test statistics. 

 

RAD-seq library construction for Illumina sequencing  

RAD-seq libraries for 225 samples from the cross GxM and for 86 from the SxG cross were prepared as 

described (Etter and Johnson, 2012). For the libraries, either 125 or 200 ng of genomic DNA from each 

sample was digested for 60 min at 37
o
C in a 25 μL reaction volume containing 2.5 μL 10x Buffer 4 and 10 

units (U) SbfI-HF (New England Biolabs [NEB]) in a 96-well PCR plate. Samples were heat-inactivated 

for 20 min at 65
o
C then allowed to cool at room temperature for 1 hour. 1.0 μL or 1.6 μL of 6bp barcoded 

SbfI-P1 Adapter (100 nM), a modified Illumina © adapter (2006 Illumina, Inc; top oligo: 5’-

ACACTCTTTCCCTACACGACGCTCTTCCGATCTxxxxxxTGC*A-3’; bottom oligo: 5’-Phos-

yyyyyyAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT-3’ [x and y denote barcode and reverse 

complement, respectively]), was added to each sample along with 1.4 μL rATP (25 mM, Epicentre), 0.4 μL 

10x NEB Buffer 4, 0.25 μL (500 U) T4 DNA Ligase (high concentration, NEB), 1.95 μL H2O and 

incubated at room temperature for 30 min. Samples were heat-inactivated for 20 min at 65
o
C and cooled at 

room temperature for 30 min, then combined in sub-libraries of 24-30 F2 individuals (15 μL per F2 library) 

and processed as 4 parallel libraries. 180 μL of each pooled sample was randomly sheared (Bioruptor) to an 

average size of 500 bp. 30 μL sheared sample was run on a 1.25% agarose gel to determine size before a 

1.0X AMPure XP bead size selection and purification was performed on the remaining sheared volume. 

The Quick Blunting Kit (NEB) was used to polish the ends of the DNA in a 25 μL reaction volume 

containing 2.5 μL 10x Blunting Buffer, 2.5 μL dNTP Mix and 1.0 μL Blunt Enzyme Mix incubated at room 

temperature for 30 min. The sample was purified with AMPure XP beads, including a 0.5x size-exclusion 

step prior to 1.0X purification, and incubated at 37
o
C for 20 min with 10 U Klenow Fragment (3’-5’ exo-

with 2.5 μL NEB Buffer 2 and 0.5 μL dATP (10 mM, Fermentas), to add 3’ adenine overhangs to the 

DNA. The reaction was moved to room temperature for 30 min, purified (1.0X) and 1.0 μL of Paired-End-

P2 Adapter (PE-P2; 10 μM), a divergent modified Illumina © adapter (2006 Illumina, Inc,; see (Etter et al., 

2011)) was ligated to the DNA fragments. The sample was purified (1.0x), eluted in 50 μL, and quantified 

using the QubitTM. We used 2.1-4.2 ng equivalent per individual as template in a 50 μL PCR amplification 

with 25 μL Phusion Hot Start Flex 2X Master Mix and 2.0 μL modified Illumina © amplification primer 

mix (10 μM, 2006 Illumina, Inc.; long-P1-forward primer: 5’-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’, 

short-P2-reverse primer: 5’-CAAGCAGAAGACGGCATACG*A-3’). PCR was carried out with an initial 

denaturing step at 98
o
C for 3 min, then 14 cycles of 40 sec at 98

o
C, 15 sec at 65

o
C, and 30 sec at 72

o
C 

followed after 14 cycles by 5 min at 72
o
C. RAD-PE GP libraries were prepared together from 225 ng of 

genomic DNA and 2.0 μL of P1 adapter each and processed as above as a sub-library except that a gel 

extraction was performed after PCR and bead cleanup to enrich for longer fragments as previously 

described (Etter et al., 2011). Libraries were purified, diluted to 10 nM and submitted to the University of 

Oregon Genomics Core Facility for qPCR quantification. Sub-libraries were mixed at equal molar 

quantities and sequenced on the HiSeq 2000 following Illumina protocols for 100bp single-end reads 

(paired-end in the case of the GP library). All sequences are available at the NCBI Short Read Archive 

(accession number: SRP041421). 

 

RAD-seq analysis of genetic cross  

RAD-seq data from the GxM genetic cross was processed and analyzed using STACKS (Catchen et al., 

2011). We identified a total of 65,773 RAD-tags. Tags containing only one SNP were selected (-F snp_l=1; 

-F snp_u=1), corresponding to 9,529 in cross GxM. RAD-tags represented in less than 25% of the 

genotyped subjects were excluded from the analysis, resulting in 8,399 markers. 

 



 

Linkage map generation based on the RAD-seq data 

We built a linkage map with R/qtl using RAD-seq markers that had homozygous haplotypes in the 

grandparents. This map was used for genome scaffolding and identification of QTL. Individuals that had 

genotypes in <1400 markers were dropped. Markers were considered duplicates and removed if >80% of 

pairs of individuals had matching genotypes. Pairs of individuals with >80% matching genotypes were also 

removed. Markers with distorted segregation patterns (p<10
-10

) were also dropped. Genotype frequencies 

were examined and confirmed to be 1:2:1 AA:AB:BB. The final cross GxM linkage map comprised 193 F2 

individuals and 5,757 RAD-seq markers.  

 

Random Forest QTL mapping 

RAD-seq markers with a minor allele frequency below 25% were removed, i.e. 2,672 markers, 

corresponding to 32% of the total markers. Additionally, individuals for which genotyping information was 

not available from more than 25% of the remaining markers were excluded for this analysis. This 

corresponded to 53 individuals, i.e. 24% of the total number of fishes. To test the effect of sex on longevity, 

QTLs were mapped in: i) all individuals, ii) males only, iii) females only, iv) the residual of the regression 

of the longevity data on sex; furthermore genetic association with v) weight, vi) weight in males, vii) 

weight in female, viii) the residual of the regression of weight on sex, as well as other discrete traits: ix) 

gender, x) tail color, and xi) presence of a black strip. 

QTL detection was carried out using a method based on Random Forest (Michaelson et al., 2010), 

that we previously adapted to take missing values and population structure into account (Clement-Ziza et 

al., 2014). This method uses genetic markers as predictors to model the traits and population structure is 

modelled as covariates. First, we estimated the kinship matrix, which scores the relatedness between the 

strains. We removed markers with more than ten missing genotype values for the population structure 

estimation. Missing values were randomly replaced by random alleles with probabilities following the 

distribution of the alleles for the marker of interest. The procedure was repeated 2,000 times, each time 

building a new kinship and performing singular value decomposition. The average of all generated matrices 

was used as the final estimate of the kinship. As covariate, we selected the eigenvectors corresponding to 

the top five eigenvalues, which accounted for more than 75% of the genotype variance. 

For the QTL mapping, forests of 14,400 trees were grown (120 forests of 120 trees) using the R 

implementation of the ‘RandomForest’ algorithm. The strategies described previously (Clement-Ziza et al., 

2014) and above were used to handle missing genotype values and model the population structure. The 

mtry parameter was left to default (one third of the total number of predictors). The QTLs were then scored 

using the predictor selection frequency as previously proposed (Michaelson et al., 2010). To estimate the 

significance of the linkages, each trait was permuted 50,000 times and random forests were trained for each 

permutation. The correspondence between the covariates and the permutated traits was maintained in order 

to properly estimate the significance of the trait-marker linkages. We obtained null distributions of the 

selection frequencies for each trait and each marker. They were used to estimate p-values for the selection 

frequencies. We then reused the permutation results to also estimate p-values for each randomized trait and 

thus obtained a null distribution of p-values. We then considered the 11 mapped traits together to estimate 

the false discovery rates (FDR) for the entire analysis based of null distribution of the p-values. 

    

Identification of genomic scaffolds underlying the lifespan QTL 

Bowtie 0.12.7 was used to map the 6 RAD-seq markers corresponding to the lifespan QTL peak on LG-3 to 

our assembled scaffolds. Scaffolds were considered to belong to the peak if at least one of these RAD-seq 

markers uniquely mapped to them. This analysis resulted in 6 scaffolds (Table S7). Of note, two of these 

scaffolds (GapFilledScaffold _60 and GapFilledScaffold_883) also contain RAD-seq markers that were 

attributed to other linkage groups by R/qtl (marker 42243 was attributed to LG-2 and markers 18875 and 

24430 were attributed to LG-15), although the genes in GapFilledScaffold_883 showed synteny with the 

equivalent region in medaka that is syntenic to LG-3. To be comprehensive, both scaffolds were kept in the 

analysis. Protein-coding genes and non-coding RNA genes contained in these scaffolds were then identified 

from our annotation files. Gene positions were plotted to scale ordered on the scaffolds using the ‘grid’ R 



 

package. SNPs between the GxM cross founders falling on these scaffolds were extracted for further 

analysis. Circular linkage maps and scaffolds were plotted using Circos: http://circos.ca/ (Krzywinski et al., 

2009). 

 

Analysis of enrichments in aging genes at the lifespan QTL 

To compare the potential enrichment in aging genes at the lifespan QTL with the rest of the linkage map, 

we first extracted all the scaffolds that contained RAD-seq markers as described above. Genes belonging to 

these scaffolds were attributed to the corresponding linkage groups (LGs). There was a total of 13,242 

genes anchored to the linkage map.  

To test the enrichment of aging-related genes at the lifespan QTL, we used the list of combined 

human and mouse aging and longevity-related genes from the GenAge database (Table S4A). Out of the 

462 genes in the mouse and aging complete list, 238 were anchored to our linkage map, including 20 in 

LG-3, and 5 at the QTL peak. Under the hypothesis of random distribution of genes, we applied Fisher’s 

exact test to measure enrichment of aging-related genes at the QTL compared to the entire linkage map or 

just LG-3. We also used the list of mouse aging and longevity-related genes from GenAge (Table S4A). 

Out of the 142 genes in this mouse list, 70 were anchored to our linkage map, including 6 in LG-3, and 3 at 

the QTL peak. 

 

2010 fish collection expedition to Mozambique 

To identify genetic variants present in wild turquoise killifish populations, we conducted an expedition and 

collected wild specimens from 5 different localities along the Chefu river drainage in southern 

Mozambique in April-May 2010. 

Strain name GPS coordinates Male coloration 

ZMZ-1001 S21˚ 48.933’ E031˚ 55.872’ Yellow 

ZMZ-1002 S21˚ 55.011’ E021˚ 05869’ Yellow 

ZMZ-1003 S22˚ 08.803’ E032˚ 49.465’ N.A.
*
 

ZMZ-1004 S22˚ 28.924’ E032˚ 49.465’ N.A.
*
 

ZMZ-1005 S22˚ 30.497’ E032˚ 33.055’ Yellow; Red 

ZMZ-1006 S23˚ 27.548’ E032˚ 33.855’ Red 

ZMZ-1007 S24˚ 06.293’ E032˚ 46.117’ Red 
*
only females were identified, therefore male coloration could not be assessed 

 

Targeted Sanger re-sequencing of candidate genes in individuals from different strains or from the 

wild 

Genomic DNA was extracted as described above. To genotype the GRN, IFI35 and ZNF800A genes, small 

amplicons (300-600bp) encompassing the residues of interest were amplified by PCR as described above 

with the following primers: 

GRN_W449_F1 TGTGAGGACAAGGAGCACTG 

GRN_W449_R1 CAAACTCCATGCAGAAAGAGC 

GRN_W449_F2 CACTTACTGAAACTTCCTCCACTGT 

GRN_W449_R2 GCTGCTAAACAATGAAATATTCCTG 

GRN_Q151_F1 TCATTCCAGAGTTGATTTTCACA 

GRN_Q151_R1 AAGGGCAGACGTTGTGTACC 

IFI35_M196_F CATCTCATTAGTGGCGAGCA 

IFI35_M196_R AGAGTCGATCTGTGGGATGG 

ZNF800A_N489_F CCGCTGTTAGACTCCTCGTC 

ZNF800A_N489_R CAGAGTGTCGCCATGAAAGA 

 

http://circos.ca/


 

Genotype of individuals was determined by direct Sanger sequencing of PCR products (MCLAB 

sequencing services). Sequences were manually confirmed using the chromatogram profiles to detect 

variants at the homozygous or heterozygous state (Table S7E, F). 

 

Code sharing 

The code generated for this work is available for download 

at http://africanturquoisekillifishbrowser.org/downloads.html. 
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